Hartmut Jaeschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6556655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089
2	Mechanisms of Hepatotoxicity. Toxicological Sciences, 2002, 65, 166-176.	1.4	1,043
3	Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. American Journal of Physiology - Renal Physiology, 2003, 284, G15-G26.	1.6	734
4	Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB Journal, 1990, 4, 3355-3359.	0.2	719
5	Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metabolism Reviews, 2012, 44, 88-106.	1.5	719
6	The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. Journal of Clinical Investigation, 2012, 122, 1574-1583.	3.9	609
7	Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology, 2003, 125, 1246-1257.	0.6	541
8	Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical Research, 2013, 30, 2174-2187.	1.7	503
9	Intracellular Signaling Mechanisms of Acetaminophen-Induced Liver Cell Death. Toxicological Sciences, 2006, 89, 31-41.	1.4	490
10	Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. Journal of Gastroenterology and Hepatology (Australia), 2011, 26, 173-179.	1.4	449
11	Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology, 2004, 40, 1170-1179.	3.6	441
12	Bile Acids Induce Inflammatory Genes in Hepatocytes. American Journal of Pathology, 2011, 178, 175-186.	1.9	409
13	Mechanisms of neutrophil-induced parenchymal cell injury. Journal of Leukocyte Biology, 1997, 61, 647-653.	1.5	402
14	Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biology, 2016, 10, 148-156.	3.9	401
15	Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. American Journal of Physiology - Renal Physiology, 2006, 290, G1083-G1088.	1.6	398
16	Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver International, 2012, 32, 8-20.	1.9	396
17	The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicology Letters, 2003, 144, 279-288.	0.4	386
18	Mode of Cell Death after Acetaminophen Overdose in Mice: Apoptosis or Oncotic Necrosis?. Toxicological Sciences, 2002, 67, 322-328.	1.4	366

#	Article	IF	CITATIONS
19	Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology, 2012, 55, 222-232.	3.6	364
20	Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology, 2010, 51, 246-254.	3.6	353
21	Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: Apoptosis or necrosis?. Hepatology, 2001, 33, 397-405.	3.6	346
22	Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicology and Applied Pharmacology, 2012, 264, 387-394.	1.3	329
23	Peroxynitrite-Induced Mitochondrial and Endonuclease-Mediated Nuclear DNA Damage in Acetaminophen Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 879-887.	1.3	319
24	Reactive oxygen and ischemia/reperfusion injury of the liver. Chemico-Biological Interactions, 1991, 79, 115-136.	1.7	298
25	Reactive oxygen and mechanisms of inflammatory liver injury. Journal of Gastroenterology and Hepatology (Australia), 2000, 15, 718-724.	1.4	298
26	A New Xenobiotic-Induced Mouse Model of Sclerosing Cholangitis and Biliary Fibrosis. American Journal of Pathology, 2007, 171, 525-536.	1.9	293
27	Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology, 2003, 38, 355-363.	3.6	290
28	Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology, 1993, 17, 915-923.	3.6	284
29	Role of Neutrophils in the Pathogenesis of Acute Inflammatory Liver Injury. Toxicologic Pathology, 2007, 35, 757-766.	0.9	284
30	Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. Journal of Hepatology, 2017, 66, 836-848.	1.8	284
31	24-norUrsodeoxycholic Acid Is Superior to Ursodeoxycholic Acid in the Treatment of Sclerosing Cholangitis in Mdr2 (Abcb4) Knockout Mice. Gastroenterology, 2006, 130, 465-481.	0.6	282
32	Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. American Journal of Physiology - Renal Physiology, 1991, 260, G355-G362.	1.6	275
33	Vascular and Hepatocellular Peroxynitrite Formation during Acetaminophen Toxicity: Role of Mitochondrial Oxidant Stress. Toxicological Sciences, 2001, 62, 212-220.	1.4	254
34	Mechanisms of Immune-Mediated Liver Injury. Toxicological Sciences, 2010, 115, 307-321.	1.4	254
35	HepaRG cells: A human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology, 2011, 53, 974-982.	3.6	254
36	Acetaminophen-Induced Oxidant Stress and Cell Injury in Cultured Mouse Hepatocytes: Protection by N-Acetyl Cysteine. Toxicological Sciences, 2004, 80, 343-349.	1.4	249

#	Article	IF	CITATIONS
37	Current strategies to minimize hepatic ischemia–reperfusion injury by targeting reactive oxygen species. Transplantation Reviews, 2012, 26, 103-114.	1.2	248
38	Peroxynitrite Is a Critical Mediator of Acetaminophen Hepatotoxicity in Murine Livers: Protection by Glutathione. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 468-475.	1.3	241
39	Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. Journal of Pharmacology and Experimental Therapeutics, 1990, 255, 935-41.	1.3	240
40	Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. Journal of Immunology, 1998, 160, 3480-6.	0.4	235
41	c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicology and Applied Pharmacology, 2010, 246, 8-17.	1.3	234
42	Superoxide Generation by Kupffer Cells and Priming of Neutrophils During Reperfusion After Hepatic Ischemia. Free Radical Research Communications, 1991, 15, 277-284.	1.8	230
43	Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. Journal of Leukocyte Biology, 1995, 57, 368-374.	1.5	229
44	The Hepatic Inflammatory Response after Acetaminophen Overdose: Role of Neutrophils. Toxicological Sciences, 2000, 54, 509-516.	1.4	224
45	Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology, 2013, 58, 2099-2108.	3.6	222
46	Nuclear Translocation of Endonuclease G and Apoptosis-Inducing Factor during Acetaminophen-Induced Liver Cell Injury. Toxicological Sciences, 2006, 94, 217-225.	1.4	218
47	Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver Journal of Clinical Investigation, 1988, 81, 1240-1246.	3.9	216
48	Role of neutrophils in acute inflammatory liver injury. Liver International, 2006, 26, 912-919.	1.9	214
49	Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. Journal of Hepatology, 2014, 61, 617-625.	1.8	214
50	Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Hepatology, 1999, 29, 443-450.	3.6	207
51	Acetaminophen Hepatotoxicity. Seminars in Liver Disease, 2019, 39, 221-234.	1.8	201
52	Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicology and Applied Pharmacology, 2014, 279, 266-274.	1.3	200
53	Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. Journal of Leukocyte Biology, 1992, 52, 377-382.	1.5	196
54	Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications. Toxicology and Applied Pharmacology, 2013, 269, 240-249.	1.3	196

4

#	Article	IF	CITATIONS
55	Mechanisms of reperfusion injury after warm ischemia of the liver. Journal of Hepato-Biliary-Pancreatic Surgery, 1998, 5, 402-408.	2.0	194
56	Current issues with acetaminophen hepatotoxicity—A clinically relevant model to test the efficacy of natural products. Life Sciences, 2011, 88, 737-745.	2.0	191
57	Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury. Biochemical and Biophysical Research Communications, 1989, 160, 140-147.	1.0	188
58	Mechanisms of Inflammatory Liver Injury: Adhesion Molecules and Cytotoxicity of Neutrophils. Toxicology and Applied Pharmacology, 1996, 139, 213-226.	1.3	179
59	Acetaminophen: Dose-Dependent Drug Hepatotoxicity and Acute Liver Failure in Patients. Digestive Diseases, 2015, 33, 464-471.	0.8	179
60	Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12169-12174.	3.3	171
61	Parenchymal cell apoptosis as a signal for sinusoidal sequestration and transendothelial migration of neutrophils in murine models of endotoxin and fas-antibody-induced liver injury. Hepatology, 1998, 28, 761-767.	3.6	169
62	Oxidative Stress and the Pathogenesis of Cholestasis. Seminars in Liver Disease, 2010, 30, 195-204.	1.8	169
63	Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. Journal of Hepatology, 2016, 65, 354-362.	1.8	169
64	Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicology and Applied Pharmacology, 2006, 216, 98-107.	1.3	168
65	Cytokine-induced upregulation of hepatic intercellular adhesion molecule-1 messenger RNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure. Hepatology, 1995, 21, 1632-1639.	3.6	165
66	Novel insight into mechanisms of cholestatic liver injury. World Journal of Gastroenterology, 2012, 18, 4985.	1.4	165
67	Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB Journal, 1990, 4, 3355-9.	0.2	164
68	Lithocholic Acid Feeding Induces Segmental Bile Duct Obstruction and Destructive Cholangitis in Mice. American Journal of Pathology, 2006, 168, 410-422.	1.9	161
69	Mitochondrial Bax Translocation Accelerates DNA Fragmentation and Cell Necrosis in a Murine Model of Acetaminophen Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 8-14.	1.3	161
70	Experimental models of hepatotoxicity related to acute liver failure. Toxicology and Applied Pharmacology, 2016, 290, 86-97.	1.3	160
71	Acetaminophen-induced Liver Injury: from Animal Models to Humans. Journal of Clinical and Translational Hepatology, 2014, 2, 153-61.	0.7	159
72	Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: attenuation by ischemic preconditioning. American Journal of Physiology - Renal Physiology, 2005, 289, G760-G767.	1.6	158

#	Article	IF	CITATIONS
73	Farnesoid X Receptor Critically Determines the Fibrotic Response in Mice but Is Expressed to a Low Extent in Human Hepatic Stellate Cells and Periductal Myofibroblasts. American Journal of Pathology, 2009, 175, 2392-2405.	1.9	154
74	Role of Lipid Peroxidation as a Mechanism of Liver Injury after Acetaminophen Overdose in Mice. Toxicological Sciences, 2003, 76, 229-236.	1.4	153
75	Apoptosis and necrosis in liver disease. Liver International, 2004, 24, 85-89.	1.9	153
76	Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicology and Applied Pharmacology, 2015, 283, 168-177.	1.3	153
77	Inhibition of Fas Receptor (CD95)-Induced Hepatic Caspase Activation and Apoptosis by Acetaminophen in Mice. Toxicology and Applied Pharmacology, 1999, 156, 179-186.	1.3	152
78	Effect of bile duct ligation on bile acid composition in mouse serum and liver. Liver International, 2012, 32, 58-69.	1.9	151
79	Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia. Free Radical Biology and Medicine, 1994, 16, 763-770.	1.3	150
80	Liver-Specific Loss of Atg5 Causes Persistent Activation of Nrf2 and Protects Against Acetaminophen-Induced Liver Injury. Toxicological Sciences, 2012, 127, 438-450.	1.4	150
81	ACTIVATION OF KUPFFER CELLS AND NEUTROPHILS FOR REACTIVE OXYGEN FORMATION IS RESPONSIBLE FOR ENDOTOXIN-ENHANCED LIVER INJURY AFTER HEPATIC ISCHEMIA. Shock, 1995, 3, 56-62.	1.0	149
82	Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicology and Applied Pharmacology, 2014, 275, 122-133.	1.3	141
83	Acetaminophen Toxicity: Novel Insights Into Mechanisms and Future Perspectives. Gene Expression, 2018, 18, 19-30.	0.5	141
84	Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. American Journal of Physiology - Renal Physiology, 2004, 286, G499-G507.	1.6	139
85	Role of caspase-1 and interleukin- $1^{\hat{l}^2}$ in acetaminophen-induced hepatic inflammation and liver injury. Toxicology and Applied Pharmacology, 2010, 247, 169-178.	1.3	137
86	Complement and tumor necrosis factor- <i>α</i> contribute to Mac-1 (CD11b/CD18) up-regulation and systemic neutrophil activation during endotoxemia in vivo. Journal of Leukocyte Biology, 1994, 55, 105-111.	1.5	136
87	Preservation injury: mechanisms, prevention and consequences. Journal of Hepatology, 1996, 25, 774-780.	1.8	135
88	Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology, 2014, 60, 1336-1345.	3.6	135
89	Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol, 2002, 27, 23-27.	0.8	133
90	Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Archives of Toxicology, 2017, 91, 761-773.	1.9	133

#	Article	IF	CITATIONS
91	Cytokine-induced upregulation of hepatic intercellular adhesion molecule-1 messenger RNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure. Hepatology, 1995, 21, 1632-9.	3.6	133
92	Acetaminophen Toxicity in Mice Lacking NADPH Oxidase Activity: Role of Peroxynitrite Formation and Mitochondrial Oxidant Stress. Free Radical Research, 2003, 37, 1289-1297.	1.5	131
93	Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology, 2013, 58, 2056-2069.	3.6	130
94	The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicology and Applied Pharmacology, 2011, 251, 226-233.	1.3	127
95	Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology, 2008, 48, 1644-1654.	3.6	126
96	Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radical Research, 2011, 45, 156-164.	1.5	125
97	Endotoxin-induced activation of the nuclear transcription factor kappa B and expression of E-selectin messenger RNA in hepatocytes, Kupffer cells, and endothelial cells in vivo. Journal of Immunology, 1996, 156, 2956-63.	0.4	125
98	Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature. American Journal of Physiology - Renal Physiology, 2001, 281, G1188-G1195.	1.6	124
99	The role of acrolein in allyl alcohol-induced lipid peroxidation and liver cell damage in mice. Biochemical Pharmacology, 1987, 36, 51-57.	2.0	121
100	Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. American Journal of Physiology - Renal Physiology, 1991, 261, G1051-G1056.	1.6	119
101	SEQUESTRATION OF NEUTROPHILS IN THE HEPATIC VASCULATURE DURING ENDOTOXEMIA IS INDEPENDENT OF κ2 INTEGRINS AND INTERCELLULAR ADHESION MOLECULE-1. Shock, 1996, 6, 351-356.	1.0	118
102	Protection against Fas Receptor-Mediated Apoptosis in Hepatocytes and Nonparenchymal Cells by a Caspase-8 Inhibitor in Vivo: Evidence for a Postmitochondrial Processing of Caspase-8. Toxicological Sciences, 2000, 58, 109-117.	1.4	116
103	Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver International, 2010, 30, 1280-1292.	1.9	116
104	Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans. Archives of Toxicology, 2014, 88, 391-401.	1.9	115
105	Parkin and Mitofusins Reciprocally Regulate Mitophagy and Mitochondrial Spheroid Formation. Journal of Biological Chemistry, 2012, 287, 42379-42388.	1.6	112
106	Scavenging Peroxynitrite with Glutathione Promotes Regeneration and Enhances Survival during Acetaminophen-Induced Liver Injury in Mice. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 67-73.	1.3	111
107	Development of an Adverse Outcome Pathway From Drug-Mediated Bile Salt Export Pump Inhibition to Cholestatic Liver Injury. Toxicological Sciences, 2013, 136, 97-106.	1.4	111
108	Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicology and Applied Pharmacology, 2011, 252, 289-297.	1.3	109

#	Article	IF	CITATIONS
109	Apoptosis-Inducing Factor Modulates Mitochondrial Oxidant Stress in Acetaminophen Hepatotoxicity. Toxicological Sciences, 2011, 122, 598-605.	1.4	108
110	Animal models of drug-induced liver injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1031-1039.	1.8	108
111	Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biology, 2013, 1, 427-432.	3.9	106
112	Novel Therapeutic Approaches Against Acetaminophen-induced Liver Injury and Acute Liver Failure. Toxicological Sciences, 2020, 174, 159-167.	1.4	102
113	Reduced oncotic necrosis in fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology, 2004, 40, 998-1007.	3.6	101
114	Diurnal fluctuation and pharmacological alteration of mouse organ glutathione content. Biochemical Pharmacology, 1985, 34, 1029-1033.	2.0	100
115	Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. American Journal of Physiology - Renal Physiology, 1993, 264, G801-G809.	1.6	100
116	NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. American Journal of Physiology - Renal Physiology, 2004, 287, G243-G252.	1.6	99
117	Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food and Chemical Toxicology, 2013, 55, 279-289.	1.8	98
118	Drug-induced lipid peroxidation in mice—II. Biochemical Pharmacology, 1982, 31, 3601-3605.	2.0	97
119	Role and mechanisms of autophagy in acetaminophenâ€induced liver injury. Liver International, 2018, 38, 1363-1374.	1.9	97
120	The role of apoptosis in acetaminophen hepatotoxicity. Food and Chemical Toxicology, 2018, 118, 709-718.	1.8	97
121	Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1005-1017.	1.5	96
122	Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase. Toxicology and Applied Pharmacology, 2014, 281, 58-66.	1.3	95
123	Role of caspases in acetaminophen-induced liver injury. Life Sciences, 2006, 78, 1670-1676.	2.0	94
124	[83] Use of isolated perfused organs in hypoxia and ischemia/reperfusion oxidant stress. Methods in Enzymology, 1990, 186, 752-759.	0.4	92
125	Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicology and Applied Pharmacology, 2013, 273, 524-531.	1.3	90
126	Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicology and Applied Pharmacology, 2015, 286, 1-9.	1.3	90

#	Article	IF	CITATIONS
127	INHIBITION OF NITRIC OXIDE SYNTHESIS AGGRAVATES REPERFUSION INJURY AFTER HEPATIC ISCHEMIA AND ENDOTOXEMIA. Shock, 1995, 4, 282-288.	1.0	89
128	Recovery of hepatocellular ATP and "pericentral apoptosis―after hemorrhage and resuscitation. FASEB Journal, 2003, 17, 993-1002.	0.2	88
129	Lysosomal Iron Mobilization and Induction of the Mitochondrial Permeability Transition in Acetaminophen-Induced Toxicity to Mouse Hepatocytes. Toxicological Sciences, 2010, 117, 101-108.	1.4	87
130	Increased P-selectin gene expression in the liver vasculature and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. Journal of Leukocyte Biology, 1998, 63, 288-296.	1.5	86
131	Acetaminophen-Induced Inhibition of Fas Receptor-Mediated Liver Cell Apoptosis: Mitochondrial Dysfunction versus Glutathione Depletion. Toxicology and Applied Pharmacology, 2002, 181, 133-141.	1.3	86
132	Low Dose Acetaminophen Induces Reversible Mitochondrial Dysfunction Associated with Transient c-Jun N-Terminal Kinase Activation in Mouse Liver. Toxicological Sciences, 2016, 150, 204-215.	1.4	86
133	Role of inflammation in the mechanism of acetaminophen-induced hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 389-397.	1.5	85
134	Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biology, 2019, 22, 101148.	3.9	85
135	Transcriptional activation of vascular cell adhesion molecule-1 gene in vivo and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. Journal of Immunology, 1997, 158, 5941-8.	0.4	84
136	Mechanisms of hypoxic cell injury. Toxicology and Applied Pharmacology, 1990, 106, 165-178.	1.3	83
137	Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. Journal of Biological Chemistry, 2015, 290, 10934-10946.	1.6	82
138	Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. Journal of Clinical and Translational Research, 2018, 4, 75-100.	0.3	82
139	Emerging and established modes of cell death during acetaminophen-induced liver injury. Archives of Toxicology, 2019, 93, 3491-3502.	1.9	82
140	Hypoxic damage generates reactive oxygen species in isolated perfused rat liver. Biochemical and Biophysical Research Communications, 1988, 150, 568-574.	1.0	81
141	The Oxygen Tension Modulates Acetaminophen-Induced Mitochondrial Oxidant Stress and Cell Injury in Cultured Hepatocytes. Toxicological Sciences, 2010, 117, 515-523.	1.4	81
142	Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicology Letters, 2014, 228, 56-66.	0.4	81
143	Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. , 2017, 3, 157-169.		80
144	Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes. Toxicology and Applied Pharmacology, 2015, 289, 213-222.	1.3	77

#	Article	IF	CITATIONS
145	Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food and Chemical Toxicology, 2020, 138, 111240.	1.8	77
146	Neutrophil depletion protects against murine acetaminophen hepatotoxicity: Another perspective. Hepatology, 2007, 45, 1588-1589.	3.6	76
147	4-Methylpyrazole protects against acetaminophen hepatotoxicity in mice and in primary human hepatocytes. Human and Experimental Toxicology, 2018, 37, 1310-1322.	1.1	76
148	Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury. American Journal of Physiology - Renal Physiology, 1997, 272, G1195-G1200.	1.6	75
149	Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice. Liver Transplantation, 2014, 20, 1372-1382.	1.3	74
150	Vascular Oxidant Stress and Hepatic Ischemia/Reperfusion Injury. Free Radical Research Communications, 1991, 13, 737-743.	1.8	72
151	Reactive oxygen species in the normal and acutely injured liver. Journal of Hepatology, 2011, 55, 227-228.	1.8	72
152	Role of nitric oxide in the oxidant stress during ischemia/reperfusion injury of the liver. Life Sciences, 1992, 50, 1797-1804.	2.0	71
153	Role of Reactive Oxygen Species in Hepatic Ischemia-Reperfusion Injury and Preconditioning. Journal of Investigative Surgery, 2003, 16, 127-140.	0.6	71
154	Delayed Treatment With 4-Methylpyrazole Protects Against Acetaminophen Hepatotoxicity in Mice by Inhibition of c-Jun n-Terminal Kinase. Toxicological Sciences, 2019, 170, 57-68.	1.4	70
155	Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology, 1993, 17, 915-23.	3.6	70
156	Differential Induction of mRNA for ICAM-1 and Selectins in Hepatocytes, Kupffer Cells and Endothelial Cells During Endotoxemia. Biochemical and Biophysical Research Communications, 1995, 211, 74-82.	1.0	68
157	Protection against TNF-Induced Liver Parenchymal Cell Apoptosis during Endotoxemia by a Novel Caspase Inhibitor in Mice. Toxicology and Applied Pharmacology, 2000, 169, 77-83.	1.3	67
158	Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. Journal of Hepatology, 2000, 33, 395-406.	1.8	67
159	Inflammation in response to hepatocellular apoptosis. Hepatology, 2002, 35, 964-966.	3.6	67
160	Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. American Journal of Physiology - Renal Physiology, 1997, 273, G602-G611.	1.6	66
161	Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver International, 2009, 29, 490-501.	1.9	66
162	Glycodeoxycholic Acid Levels as Prognostic Biomarker in Acetaminophen-Induced Acute Liver Failure Patients. Toxicological Sciences, 2014, 142, 436-444.	1.4	66

#	Article	IF	CITATIONS
163	Oxidative stress and acute hepatic injury. Current Opinion in Toxicology, 2018, 7, 17-21.	2.6	66
164	The impact of sterile inflammation in acute liver injury. Journal of Clinical and Translational Research, 2017, 3, 170-188.	0.3	66
165	Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food and Chemical Toxicology, 2017, 108, 339-350.	1.8	64
166	Mechanisms of Inflammatory Liver Injury and Drug-Induced Hepatotoxicity. Current Pharmacology Reports, 2018, 4, 346-357.	1.5	63
167	Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice. American Journal of Physiology - Renal Physiology, 2007, 292, G1385-G1395.	1.6	62
168	NADH-Dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: The protective effect of vitamin E. Chemico-Biological Interactions, 1992, 81, 57-68.	1.7	60
169	Differences in Early Acetaminophen Hepatotoxicity between Obese <i>ob/ob</i> and <i>db/db</i> Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 676-687.	1.3	60
170	Purinergic Receptor Antagonist A438079 Protects Against Acetaminophen-Induced Liver Injury by Inhibiting P450 Isoenzymes, Not by Inflammasome Activation. Toxicological Sciences, 2013, 131, 325-335.	1.4	59
171	Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline. Free Radical Biology and Medicine, 2016, 97, 418-426.	1.3	59
172	Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. Journal of Leukocyte Biology, 1995, 57, 368-74.	1.5	58
173	Time course of acetaminophen-protein adducts and acetaminophen metabolites in circulation of overdose patients and in HepaRG cells. Xenobiotica, 2015, 45, 921-929.	0.5	57
174	Pathophysiological significance of c-jun <i>N</i> -terminal kinase in acetaminophen hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 1769-1779.	1.5	56
175	Oxidant stress-induced liver injury in vivo: role of apoptosis, oncotic necrosis, and c-Jun NH2-terminal kinase activation. American Journal of Physiology - Renal Physiology, 2009, 296, G572-G581.	1.6	55
176	Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice. Blood, 2015, 126, 1835-1843.	0.6	55
177	Editor's Highlight: Metformin Protects Against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicological Sciences, 2016, 154, 214-226.	1.4	55
178	Generation and functional significance of CXC chemokines for neutrophil-induced liver injury during endotoxemia. American Journal of Physiology - Renal Physiology, 2005, 288, G880-G886.	1.6	54
179	Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food and Chemical Toxicology, 2015, 81, 62-70.	1.8	54
180	Prevention of Kupffer cell-induced oxidant injury in rat liver by atrial natriuretic peptide. American Journal of Physiology - Renal Physiology, 1999, 276, G1137-G1144.	1.6	53

#	Article	IF	CITATIONS
181	A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen. Toxicology and Applied Pharmacology, 2016, 292, 40-55.	1.3	53
182	Oncotic necrosis and caspase-dependent apoptosis during galactosamine-induced liver injury in rats. Toxicology and Applied Pharmacology, 2003, 190, 37-46.	1.3	52
183	Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice. Toxicology Letters, 2014, 224, 186-195.	0.4	52
184	Caspase Inhibition Prevents Tumor Necrosis Factor-α–Induced Apoptosis and Promotes Necrotic Cell Death in Mouse Hepatocytes inÂVivo and inÂVitro. American Journal of Pathology, 2016, 186, 2623-2636.	1.9	52
185	Differential activation pattern of redox-sensitive transcription factors and stress-inducible dilator systems heme oxygenase-1 and inducible nitric oxide synthase in hemorrhagic and endotoxic shock. Critical Care Medicine, 2001, 29, 1962-1971.	0.4	50
186	Differential Protection with Inhibitors of Caspase-8 and Caspase-3 in Murine Models of Tumor Necrosis Factor and Fas Receptor-Mediated Hepatocellular Apoptosis. Toxicology and Applied Pharmacology, 2001, 175, 243-252.	1.3	50
187	Troglitazone Hepatotoxicity: Are We Getting Closer to Understanding Idiosyncratic Liver Injury?. Toxicological Sciences, 2007, 97, 1-3.	1.4	50
188	A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and <i>N</i> -ethylmaleimide. Toxicology Mechanisms and Methods, 2015, 25, 589-595.	1.3	50
189	Mechanism of protection by metallothionein against acetaminophen hepatotoxicity. Toxicology and Applied Pharmacology, 2010, 242, 182-190.	1.3	49
190	Dual Role of Epidermal Growth Factor Receptor in Liver Injury and Regeneration after Acetaminophen Overdose in Mice. Toxicological Sciences, 2017, 155, 363-378.	1.4	49
191	A mitochondrial journey through acetaminophen hepatotoxicity. Food and Chemical Toxicology, 2020, 140, 111282.	1.8	49
192	DIFFERENTIAL EFFECT OF 2-AMINOETHYL-ISOTHIOUREA, AN INHIBITOR OF THE INDUCIBLE NITRIC OXIDE SYNTHASE, ON MICROVASCULAR BLOOD FLOW AND ORGAN INJURY IN MODELS OF HEPATIC ISCHEMIA-REPERFUSION AND ENDOTOXEMIA. Shock, 1998, 10, 20-25.	1.0	48
193	Hepatic Neutrophil Infiltration in the Pathogenesis of Alcohol-Induced Liver Injury. Toxicology Mechanisms and Methods, 2007, 17, 431-440.	1.3	48
194	Receptor-Interacting Serine/Threonine-Protein Kinase 3 (RIPK3)–Mixed Lineage Kinase Domain-Like Protein (MLKL)–Mediated Necroptosis Contributes to Ischemia-Reperfusion Injury of Steatotic Livers. American Journal of Pathology, 2019, 189, 1363-1374.	1.9	48
195	The Effect of 4-Methylpyrazole on Oxidative Metabolism of Acetaminophen in Human Volunteers. Journal of Medical Toxicology, 2020, 16, 169-176.	0.8	48
196	Drug-induced lipid peroxidation in mice—III. Biochemical Pharmacology, 1982, 31, 3607-3611.	2.0	47
197	Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: Effect on HMG-CoA synthase. Toxicology Letters, 2008, 177, 188-197.	0.4	47
198	Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharmaceutica Sinica B, 2021, 11, 3740-3755.	5.7	47

#	Article	IF	CITATIONS
199	Pathophysiologic Importance of E- and L-Selectin for Neutrophil-Induced Liver Injury During Endotoxemia in Mice. Hepatology, 2000, 32, 990-998.	3.6	46
200	Innate immunity and acetaminophen-induced liver injury: Why so many controversies?. Hepatology, 2008, 48, 699-701.	3.6	46
201	Critical review of resveratrol in xenobiotic-induced hepatotoxicity. Food and Chemical Toxicology, 2015, 86, 309-318.	1.8	46
202	Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology, 2004, 40, 998-1007.	3.6	45
203	Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Archives of Toxicology, 2019, 93, 163-178.	1.9	44
204	The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Current Neuropharmacology, 2021, 19, 1202-1224.	1.4	44
205	The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicology and Applied Pharmacology, 2013, 273, 484-491.	1.3	43
206	Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice. Gastroenterology, 2015, 148, 1012-1023.e14.	0.6	43
207	No increase of biliary permeability in ethinylestradiol-treated rats. Gastroenterology, 1983, 85, 808-814.	0.6	42
208	III. Leukocyte adhesion and transmigration in the liver vasculature*. American Journal of Physiology - Renal Physiology, 1997, 273, G1169-G1173.	1.6	42
209	Kupffer cell activation after no-flow ischemia versus hemorrhagic shock. Free Radical Biology and Medicine, 2002, 33, 210-219.	1.3	42
210	Effect of acetaminophen on hepatic content and biliary efflux of glutathione disulfide in mice. Chemico-Biological Interactions, 1989, 70, 241-248.	1.7	41
211	Plasminogen Activator Inhibitor-1 Limits Liver Injury and Facilitates Regeneration after Acetaminophen Overdose. Toxicological Sciences, 2008, 104, 419-427.	1.4	41
212	No evidence for caspase-dependent apoptosis in acetaminophen hepatotoxicity. Hepatology, 2011, 53, 718-719.	3.6	41
213	Cell Death and Prognosis of Mortality in Alcoholic Hepatitis Patients Using Plasma Keratin-18. Gene Expression, 2017, 17, 301-312.	0.5	41
214	Therapeutic targets for cholestatic liver injury. Expert Opinion on Therapeutic Targets, 2016, 20, 463-475.	1.5	40
215	Acetaminophen hepatotoxicity: A mitochondrial perspective. Advances in Pharmacology, 2019, 85, 195-219.	1.2	40
216	Reactive Oxygen as Modulator of TNF and Fas Receptor-Mediated ApoptosisIn Vivo: Studies with Glutathione Peroxidase-Deficient Mice. Antioxidants and Redox Signaling, 2002, 4, 733-740.	2.5	39

#	Article	IF	CITATIONS
217	Mitochondrial damage and biogenesis in acetaminophen-induced liver injury. Liver Research, 2019, 3, 150-156.	0.5	39
218	Inflammation and Cell Death During Cholestasis: The Evolving Role of Bile Acids. Gene Expression, 2019, 19, 215-228.	0.5	39
219	The role of osteopontin and tumor necrosis factor alpha receptor-1 in xenobiotic-induced cholangitis and biliary fibrosis in mice. Laboratory Investigation, 2010, 90, 844-852.	1.7	38
220	Bile Acidâ€Induced Toxicity in Hepa <scp>RG</scp> Cells Recapitulates the Response in Primary Human Hepatocytes. Basic and Clinical Pharmacology and Toxicology, 2016, 118, 160-167.	1.2	38
221	Comparing N-acetylcysteine and 4-methylpyrazole as antidotes for acetaminophen overdose. Archives of Toxicology, 2022, 96, 453-465.	1.9	38
222	Release of soluble intercellular adhesion molecule 1 into bile and serum in murine endotoxin shock. Hepatology, 1996, 23, 530-536.	3.6	37
223	The strength of the Fas ligand signal determines whether hepatocytes act as type 1 or type 2 cells in murine livers. Hepatology, 2009, 50, 1558-1566.	3.6	37
224	MicroRNAs as Signaling Mediators and Biomarkers of Drug- and Chemical-Induced Liver Injury. Journal of Clinical Medicine, 2015, 4, 1063-1078.	1.0	37
225	Plasma biomarkers to study mechanisms of liver injury in patients with hypoxic hepatitis. Liver International, 2017, 37, 377-384.	1.9	37
226	Pleiotropic Role of p53 in Injury and Liver Regeneration after Acetaminophen Overdose. American Journal of Pathology, 2018, 188, 1406-1418.	1.9	36
227	Enhanced sinusoidal glutathione efflux during endotoxin-induced oxidant stress in vivo. American Journal of Physiology - Renal Physiology, 1992, 263, G60-G68.	1.6	35
228	Reperfusion injury after warm ischemia or cold storage of the liver: Role of apoptotic cell death. Transplantation Proceedings, 2002, 34, 2656-2658.	0.3	35
229	Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock, 1995, 3, 56-62.	1.0	35
230	Increase in biliary permeability subsequent to intrahepatic cholestasis by estradiol valerate in rats. Gastroenterology, 1987, 93, 533-538.	0.6	34
231	Chlorotyrosine protein adducts are reliable biomarkers of neutrophil-induced cytotoxicity in vivo. Comparative Hepatology, 2004, 3, S48.	0.9	34
232	Biomarkers of drug-induced liver injury: progress and utility in research, medicine, and regulation. Expert Review of Molecular Diagnostics, 2018, 18, 797-807.	1.5	34
233	Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicology Letters, 2021, 338, 21-31.	0.4	34
234	Regulation of canalicular bile formation by α-adrenergic action and by external ATP in the isolated perfused rat liver. Biochemical and Biophysical Research Communications, 1985, 131, 139-145.	1.0	33

#	Article	IF	CITATIONS
235	Xanthine oxidase–induced oxidant stress during hepatic ischemia-reperfusion: Are we coming full circle after 20 years?. Hepatology, 2002, 36, 761-763.	3.6	33
236	Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning. Toxicology and Applied Pharmacology, 2014, 274, 417-424.	1.3	33
237	Differential susceptibility to acetaminophen-induced liver injury inÂsub-strains of C57BL/6 mice: 6N versus 6J. Food and Chemical Toxicology, 2016, 98, 107-118.	1.8	33
238	4-methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicology and Applied Pharmacology, 2020, 409, 115317.	1.3	33
239	Pathophysiological Role of Poly(ADP-Ribose) Polymerase (PARP) Activation during Acetaminophen-Induced Liver Cell Necrosis in Mice. Toxicological Sciences, 2005, 84, 201-208.	1.4	32
240	Antineutrophil monoclonal antibody (1F12) alters superoxide anion release by neutrophils and Kupffer cells. Journal of Leukocyte Biology, 1994, 55, 328-335.	1.5	31
241	Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon, 2017, 125, 99-109.	0.8	31
242	Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicology Letters, 2017, 278, 30-37.	0.4	31
243	Biomarkers of drug-induced liver injury. Advances in Pharmacology, 2019, 85, 221-239.	1.2	31
244	Interruption of bile acid uptake by hepatocytes after acetaminophen overdose ameliorates hepatotoxicity. Journal of Hepatology, 2022, 77, 71-83.	1.8	31
245	Lysosomal Instability and Cathepsin <scp>B</scp> Release during Acetaminophen Hepatotoxicity. Basic and Clinical Pharmacology and Toxicology, 2012, 111, 417-425.	1.2	30
246	Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans. Biomarkers, 2014, 19, 222-230.	0.9	30
247	Sterile inflammation in acute liver injury: myth or mystery?. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1027-1029.	1.4	30
248	[75] Measurement of oxidant stress in Vivo. Methods in Enzymology, 1990, 186, 681-685.	0.4	29
249	Neutrophil-induced lung damage after hepatic ischemia and endotoxemia. Free Radical Biology and Medicine, 1996, 20, 189-197.	1.3	29
250	Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicology and Applied Pharmacology, 2011, 257, 449-458.	1.3	29
251	Involvement of connexin43 in acetaminophen-induced liver injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1111-1121.	1.8	29

Oxidant Stress and Lipid Peroxidation in Acetaminophen Hepatotoxicity. Reactive Oxygen Species (Apex,) Tj ETQq0.00 rgBT /Overlock 1

#	Article	IF	CITATIONS
253	Beneficial effects of extracellular glutathione against endotoxin-induced liver injury during ischemia and reperfusion. Circulatory Shock, 1994, 43, 64-70.	0.6	29
254	Pathophysiological consequences of enhanced intracellular superoxide formation in isolated perfused rat liver. Chemico-Biological Interactions, 1992, 84, 55-68.	1.7	28
255	How relevant are neutrophils for acetaminophen hepatotoxicity?. Hepatology, 2006, 43, 1191-1194.	3.6	28
256	Cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicology Letters, 2015, 235, 216-217.	0.4	28
257	Drug-induced intrahepatic cholestasis: characterization of different pathomechanisms. Archives of Toxicology, 1987, 60, 124-130.	1.9	27
258	Role of PECAM-1 (CD31) in neutrophil transmigration in murine models of liver and peritoneal inflammation. American Journal of Physiology - Renal Physiology, 1998, 274, G776-G782.	1.6	27
259	Kupffer cell-induced oxidant stress during hepatic ischemia-reperfusion: Does the controversy continue?. Hepatology, 1999, 30, 1527-1528.	3.6	27
260	Lipin deactivation after acetaminophen overdose causes phosphatidic acid accumulation in liver and plasma in mice and humans and enhances liver regeneration. Food and Chemical Toxicology, 2018, 115, 273-283.	1.8	27
261	Role of reactive oxygen species in hepatic ischemia-reperfusion injury and preconditioning. Journal of Investigative Surgery, 2003, 16, 127-40.	0.6	27
262	Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver. Advances in Pharmacology, 2015, 74, 131-161.	1.2	26
263	Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis. Toxicological Sciences, 2018, 162, 599-610.	1.4	26
264	Kupffer cells regulate liver recovery through induction of chemokine receptor CXCR2 on hepatocytes after acetaminophen overdose in mice. Archives of Toxicology, 2022, 96, 305-320.	1.9	26
265	Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice. Comparative Hepatology, 2004, 3, S46.	0.9	25
266	Fas receptor-deficient lpr mice are protected against acetaminophen hepatotoxicity due to higher glutathione synthesis and enhanced detoxification of oxidant stress. Food and Chemical Toxicology, 2013, 58, 228-235.	1.8	25
267	Post-hepatectomy liver regeneration in the context of bile acid homeostasis and the gut-liver signaling axis. Journal of Clinical and Translational Research, 2018, 4, 1-46.	0.3	25
268	Mechanisms and in vitro models of drug-induced cholestasis. Archives of Toxicology, 2019, 93, 1169-1186.	1.9	25
269	Role of extracellular vesicles in release of protein adducts after acetaminophen-induced liver injury in mice and humans. Toxicology Letters, 2019, 301, 125-132.	0.4	25
270	Targeting autophagy for drug-induced hepatotoxicity. Autophagy, 2012, 8, 709-710.	4.3	24

#	Article	IF	CITATIONS
271	Serum Glutamate Dehydrogenase—Biomarker for Liver Cell Death or Mitochondrial Dysfunction?. Toxicological Sciences, 2013, 134, 221-222.	1.4	24
272	Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regulatory Toxicology and Pharmacology, 2021, 120, 104859.	1.3	24
273	The BH3-Only Protein Bid Does Not Mediate Death-Receptor-Induced Liver Injury in Obstructive Cholestasis. American Journal of Pathology, 2009, 175, 1077-1085.	1.9	23
274	Mitochondrial Membrane Potential Drives Early Change in Mitochondrial Morphology After Acetaminophen Exposure. Toxicological Sciences, 2021, 180, 186-195.	1.4	23
275	Priming of phagocytes for reactive oxygen production during hepatic ischemia-reperfusion potentiates the susceptibility for endotoxin-induced liver injury. Circulatory Shock, 1994, 43, 9-17.	0.6	23
276	Manipulation of mouse organ glutathione contents I: Enhancement by oral administration of butylated hydroxyanisole and butylated hydroxytoluene. Toxicology, 1985, 36, 77-85.	2.0	22
277	A possible role of plasma glutathione in glucose-mediated insulin secretion: in vitro and in vivo studies in rats. Diabetologia, 1989, 32, 797-800.	2.9	22
278	Glutathione disulfide as index of oxidant stress in rat liver during hypoxia. American Journal of Physiology - Renal Physiology, 1990, 258, G499-G505.	1.6	22
279	Multiple scan modes in the hybrid tandem mass spectrometric screening and characterization of the glutathione conjugate of 2-furamide. Journal of the American Society for Mass Spectrometry, 1991, 2, 55-68.	1.2	22
280	Autophagy in macrophages regulates the inflammasome and protects against liver injury. Journal of Hepatology, 2016, 64, 16-18.	1.8	22
281	Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 819-830.	1.8	22
282	CHEMOKINES, NEUTROPHILS, AND INFLAMMATORY LIVER INJURY. Shock, 1996, 6, 403-404.	1.0	21
283	Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses. Food and Chemical Toxicology, 2015, 86, 253-261.	1.8	21
284	Herbal extracts as hepatoprotectants against acetaminophen hepatotoxicity. World Journal of Gastroenterology, 2010, 16, 2448.	1.4	20
285	Novel strategies for the treatment of acetaminophen hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1039-1050.	1.5	20
286	Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Archives of Toxicology, 2021, 95, 3377-3391.	1.9	20
287	Oxidant Stress and Acetaminophen Hepatotoxicity: Mechanism-Based Drug Development. Antioxidants and Redox Signaling, 2021, 35, 718-733.	2.5	20
288	Spatial Reconstruction of the Early Hepatic Transcriptomic Landscape After an Acetaminophen Overdose Using Single-Cell RNA-Sequencing. Toxicological Sciences, 2021, 182, 327-345.	1.4	19

#	Article	IF	CITATIONS
289	Ferroptosis and Acetaminophen Hepatotoxicity: Are We Going Down Another Rabbit Hole?. Gene Expression, 2021, 20, 169-178.	0.5	19
290	Structure, Regulation and Function of Gap Junctions in Liver. Cell Communication and Adhesion, 2015, 22, 29-37.	1.0	18
291	The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury. Xenobiotica, 2015, 45, 442-449.	0.5	18
292	Caspase inhibitors for the treatment of liver disease: friend or foe?. Expert Review of Gastroenterology and Hepatology, 2017, 11, 397-399.	1.4	18
293	Disruption of Estrogen Receptor Alpha in Rats Results in Faster Initiation of Compensatory Regeneration Despite Higher Liver Injury After Carbon Tetrachloride Treatment. International Journal of Toxicology, 2017, 36, 199-206.	0.6	18
294	Leukocyte cell derived chemotaxin-2 (Lect2) as a predictor of survival in adult acute liver failure. Translational Gastroenterology and Hepatology, 2019, 4, 17-17.	1.5	18
295	Biomarkers of drug-induced liver injury: a mechanistic perspective through acetaminophen hepatotoxicity. Expert Review of Gastroenterology and Hepatology, 2021, 15, 363-375.	1.4	18
296	Mitochondrial Dynamics in Drug-Induced Liver Injury. Livers, 2021, 1, 102-115.	0.8	18
297	Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1510-1529.	2.3	18
298	The 21-aminosteroid tirilazad mesylate protects against endotoxin shock and acute liver failure in rats. Journal of Pharmacology and Experimental Therapeutics, 1994, 271, 438-45.	1.3	18
299	Critical role of CXC chemokines in endotoxemic liver injury in mice. Journal of Leukocyte Biology, 2004, 76, 1089-1090.	1.5	17
300	Tissue factor contributes to neutrophil CD11b expression in alpha-naphthylisothiocyanate-treated mice. Toxicology and Applied Pharmacology, 2011, 250, 256-262.	1.3	17
301	Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice. Toxicological Sciences, 2018, 161, 34-47.	1.4	17
302	Identification of Serum Biomarkers to Distinguish Hazardous and Benign Aminotransferase Elevations. Toxicological Sciences, 2020, 173, 244-254.	1.4	17
303	Mice deficient in pyruvate dehydrogenase kinase 4 are protected against acetaminophen-induced hepatotoxicity. Toxicology and Applied Pharmacology, 2020, 387, 114849.	1.3	17
304	Contrasting model mechanisms of alanine aminotransferase (ALT) release from damaged and necrotic hepatocytes as an example of general biomarker mechanisms. PLoS Computational Biology, 2020, 16, e1007622.	1.5	17
305	The role of Iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicology and Applied Pharmacology, 2022, 445, 116043.	1.3	17
306	Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity. Toxicology and Applied Pharmacology, 2012, 261, 189-195.	1.3	16

#	Article	IF	CITATIONS
307	Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Archives of Toxicology, 2017, 91, 2245-2261.	1.9	16
308	Aldehyde dehydrogenase-2 activation decreases acetaminophen hepatotoxicity by prevention of mitochondrial depolarization. Toxicology and Applied Pharmacology, 2020, 396, 114982.	1.3	16
309	Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology, 1993, 17, 915-923.	3.6	16
310	Oxidant Stress and Lipid Peroxidation in Acetaminophen Hepatotoxicity. , 0, , .		16
311	Cytotoxicity of aromatic amines in rat liver and oxidative stress. Chemico-Biological Interactions, 1995, 98, 85-95.	1.7	15
312	Connexin32: a mediator of acetaminophen-induced liver injury?. Toxicology Mechanisms and Methods, 2016, 26, 88-96.	1.3	15
313	Chlorpromazine protects against acetaminophen-induced liver injury in mice by modulating autophagy and c-Jun N-terminal kinase activation. Liver Research, 2019, 3, 65-74.	O.5	15
314	Late Protective Effect of Netrin-1 in the Murine Acetaminophen Hepatotoxicity Model. Toxicological Sciences, 2020, 175, 168-181.	1.4	15
315	The 21-aminosteroid tirilazad mesylate protects against liver injury via membrane stabilization not inhibition of lipid peroxidation. Journal of Pharmacology and Experimental Therapeutics, 1996, 277, 714-20.	1.3	15
316	Manipulation of mouse organ glutathione contents II: Time and dose-dependent induction of the glutathione conjugation system by phenolic antioxidants. Toxicology, 1986, 39, 59-70.	2.0	14
317	Diquat hepatotoxicity in the Fischer-344 rat: The role of covalent binding to tissue proteins and lipids. Toxicology and Applied Pharmacology, 1989, 101, 319-327.	1.3	14
318	Role of innate and adaptive immunity during drug-induced liver injury. Toxicology Research, 2012, 1, 161.	0.9	14
319	Hepatitis C virus structural proteins can exacerbate or ameliorate acetaminophen-induced liver injury in mice. Archives of Toxicology, 2015, 89, 773-783.	1.9	14
320	The Relationship Between Circulating Acetaminophen-Protein Adduct Concentrations and Alanine Aminotransferase Activities in Patients With and Without Acetaminophen Overdose and Toxicity. Journal of Medical Toxicology, 2019, 15, 143-155.	0.8	14
321	Impaired protein adduct removal following repeat administration of subtoxic doses of acetaminophen enhances liver injury in fed mice. Archives of Toxicology, 2021, 95, 1463-1473.	1.9	14
322	Choleresis and increased biliary efflux of glutathione induced by phenolic antioxidants in rats. Toxicology, 1988, 52, 225-235.	2.0	13
323	The role of oxidant stress in acetaminophen-induced liver injury. Current Opinion in Toxicology, 2020, 20-21, 9-14.	2.6	13
324	Critical Factors in the Assessment of Cholestatic Liver Injury In Vitro. Methods in Molecular Biology, 2015, 1250, 363-376.	0.4	13

#	Article	IF	CITATIONS
325	Building Shared Experience to Advance Practical Application of Pathway-Based Toxicology: Liver Toxicity Mode-of-Action. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 500-19.	0.9	13
326	Proteomics Indicates Lactate Dehydrogenase Is Prognostic in Acetaminophen-Induced Acute Liver Failure Patients and Reveals Altered Signaling Pathways. Toxicological Sciences, 2022, 187, 25-34.	1.4	13
327	Hepatobiliary Transporter Expression in Intercellular Adhesion Molecule 1 Knockout and Fas Receptor-Deficient Mice after Common Bile Duct Ligation Is Independent of the Degree of Inflammation and Oxidative Stress. Drug Metabolism and Disposition, 2007, 35, 1694-1699.	1.7	12
328	Caveats of using acetaminophen hepatotoxicity models for natural product testing. Toxicology Letters, 2012, 215, 40-41.	0.4	12
329	Propagation of Pericentral Necrosis During Acetaminophen-Induced Liver Injury: Evidence for Early Interhepatocyte Communication and Information Exchange. Toxicological Sciences, 2019, 169, 151-166.	1.4	12
330	Application of the DILIsym® Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen. Regulatory Toxicology and Pharmacology, 2020, 118, 104788.	1.3	12
331	Dual roles of p62/SQSTM1 in the injury and recovery phases of acetaminophen-induced liver injury in mice. Acta Pharmaceutica Sinica B, 2021, 11, 3791-3805.	5.7	12
332	Disposition and hepatoprotection by phosphatidyl choline liposomes in mouse liver. Chemico-Biological Interactions, 1987, 64, 127-137.	1.7	11
333	THE THERAPEUTIC POTENTIAL OF GLUTATHIONE IN HEPATIC ISCHEMIA-REPERFUSION INJURY. Transplantation, 1993, 56, 256-257.	0.5	11
334	Are cultured liver cells the right tool to investigate mechanisms of liver disease or hepatotoxicity?. Hepatology, 2003, 38, 1053-1055.	3.6	11
335	Gene array analysis of the hepatic response to endotoxin in glutathione peroxidase-deficient mice. Toxicology Letters, 2003, 144, 397-406.	0.4	11
336	Mechanisms of sterile inflammation in acetaminophen hepatotoxicity. Cellular and Molecular Immunology, 2018, 15, 74-75.	4.8	11
337	Alcoholic Hepatitis: Lost in Translation. Journal of Clinical and Translational Hepatology, 2018, 6, 1-8.	0.7	11
338	Sinusoidal endothelial cell and parenchymal cell injury during endotoxemia and hepatic ischemia-reperfusion: protection by the 21-aminosteroid tirilazad mesylate. International Hepatology Communications, 1997, 6, 121-129.	0.7	10
339	Biomarkers of mitotoxicity after acute liver injury: Further insights into the interpretation of glutamate dehydrogenase. Journal of Clinical and Translational Research, 2021, 7, 61-65.	0.3	10
340	The role of MLKL in Hepatic Ischemia-Reperfusion Injury of Alcoholic Steatotic Livers. International Journal of Biological Sciences, 2022, 18, 1096-1106.	2.6	10
341	IS ANTI-P-SELECTIN THERAPY EFFECTIVE IN HEPATIC ISCHEMIA-REPERFUSION INJURY BECAUSE IT INHIBITS NEUTROPHIL RECRUITMENT?. Shock, 1999, 12, 233-234.	1.0	9
342	Pathophysiological relevance of neutrophils in acetaminophen hepatotoxicity. Hepatology, 2013, 57, 419-419.	3.6	9

#	Article	IF	CITATIONS
343	Hearing, reactive metabolite formation, and oxidative stress in cochleae after a single acute overdose of acetaminophen: an <i>in vivo</i> study. Toxicology Mechanisms and Methods, 2016, 26, 104-111.	1.3	9
344	Extracellular vesicles: Roles and applications in drug-induced liver injury. Advances in Clinical Chemistry, 2021, 102, 63-125.	1.8	9
345	Antioxidant Defense Mechanisms. , 2010, , 319-337.		8
346	Mechanisms of Acetaminophen Hepatotoxicity: Do We Need JNK for Cell Death?. Gastroenterology, 2016, 151, 371-372.	0.6	8
347	Acetaminophen hepatotoxicity and sterile inflammation: The mechanism of protection of Chlorogenic acid. Chemico-Biological Interactions, 2016, 243, 148-149.	1.7	8
348	Direct Amplification of Tissue Factor:Factor VIIa Procoagulant Activity by Bile Acids Drives Intrahepatic Coagulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2038-2048.	1.1	8
349	Hepatocyte-Specific Deletion of Yes-Associated Protein Improves Recovery From Acetaminophen-Induced Acute Liver Injury. Toxicological Sciences, 2021, 184, 276-285.	1.4	8
350	No evidence for reactive oxygen damage in ischemia-reflow injury. Transactions of the Association of American Physicians, 1987, 100, 54-61.	0.1	8
351	Mechanisms of Acetaminophen Hepatotoxicity. , 2010, , 457-473.		7
352	Pathophysiological Relevance of Proteomics Investigations of Drug-Induced Hepatotoxicity in HepG2 Cells. Toxicological Sciences, 2011, 121, 428-430.	1.4	7
353	PGAM5: a new player in immune-mediated liver injury. Gut, 2017, 66, 567-568.	6.1	7
354	Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease. Journal of Clinical and Translational Research, 2015, 1, 107-115.	0.3	7
355	Oxidant Stress, Antioxidant Defense, and Liver Injury. , 2013, , 71-84.		6
356	Measuring Apoptosis and Necrosis in Cholestatic Liver Injury. Methods in Molecular Biology, 2019, 1981, 133-147.	0.4	6
357	Pleiotropic Roles of Platelets and Neutrophils in Cell Death and Recovery During Acetaminophen Hepatotoxicity. Hepatology, 2020, 72, 1873-1876.	3.6	6
358	A comprehensive weight of evidence assessment of published acetaminophen genotoxicity data: Implications for its carcinogenic hazard potential. Regulatory Toxicology and Pharmacology, 2021, 122, 104892.	1.3	6
359	Role of Reactive Oxygen Species in Hepatic Ischemia-Reperfusion Injury and Preconditioning. Journal of Investigative Surgery, 2003, 16, 127-140.	0.6	6
360	Liuweiwuling tablets protect against acetaminophen hepatotoxicity: What is the protective mechanism?. World Journal of Gastroenterology, 2016, 22, 3302.	1.4	6

#	Article	IF	CITATIONS
361	Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity. Journal of Clinical and Translational Research, 2015, 1, 100-106.	0.3	6
362	Redox Considerations in Hepatic Injury and Inflammation. Antioxidants and Redox Signaling, 2002, 4, 699-700.	2.5	5
363	Acetaminophen-induced apoptosis: Facts versus fiction. Journal of Clinical and Translational Research, 2020, 6, 36-47.	0.3	5
364	Activation of the adenosine A2B receptor even beyond the therapeutic window of N-acetylcysteine accelerates liver recovery after an acetaminophen overdose. Food and Chemical Toxicology, 2022, 163, 112911.	1.8	5
365	Mass spectrometric quantification of cysteine-containing leukotrienes in rat bile using13C-labeled internal standards. Biological Mass Spectrometry, 1992, 21, 509-516.	0.5	4
366	Effect of Ni(II) on tissue hydrogen peroxide content in mice as inferred from glutathione and glutathione disulfide measurements. Life Sciences, 1994, 55, 1789-1796.	2.0	4
367	Antioxidant gene therapy and hepatic ischemia-reperfusion injury. Hepatology, 2002, 36, 243-245.	3.6	4
368	Inflammation and drug hepatotoxicity: Aggravation of injury or clean-up mission?. Hepatology, 2005, 41, 1176-1178.	3.6	4
369	Autophagy and acetaminophen hepatotoxicity: how useful are Atg7-deficient mice?. Journal of Gastroenterology, 2012, 47, 845-846.	2.3	4
370	Apoptosis or Necrosis in Acetaminophen-Induced Acute Liver Failure? New Insights From Mechanistic Biomarkers*. Critical Care Medicine, 2013, 41, 2653-2654.	0.4	4
371	Acetaminophen. , 2017, , 101-112.		4
372	Response to the opinion letter entitled Role of Ferroptosis in Acetaminophen Hepatotoxicity by Yamada et al Archives of Toxicology, 2020, 94, 1771-1772.	1.9	4
373	Fructose Protects Against Acetaminophenâ€Induced Hepatotoxicity Mainly by Activating the Carbohydrateâ€Response Elementâ€Binding Protein α–Fibroblast Growth Factor 21 Axis in Mice. Hepatology Communications, 2021, 5, 992-1008.	2.0	4
374	Liver-specific deletion of mechanistic target of rapamycin does not protect against acetaminophen-induced liver injury in mice. Liver Research, 2021, 5, 79-87.	0.5	4
375	Contribution of complement-stimulated hepatic macrophages and neutrophils to endotoxin-induced liver injury in rats. Hepatology, 1994, 19, 973-9.	3.6	4
376	Chemokines and liver inflammation: The battle between pro- and anti-inflammatory mediators. Hepatology, 1997, 25, 252-253.	3.6	4
377	Serum complement mediates endotoxin-induced cysteinyl leukotriene formation in rats in vivo. American Journal of Physiology - Renal Physiology, 1992, 263, G947-G952.	1.6	3
378	Reactive Nitrogen Species in Acetaminophen-Induced Mitochondrial Damage and Toxicity in Mouse Hepatocytes: A Cautionary Note on the Impact of Cell Culture Conditions. Chemical Research in Toxicology, 2010, 23, 1853-1854.	1.7	3

#	Article	IF	CITATIONS
379	Comment on "Cyclophilin A Is a Damage-Associated Molecular Pattern Molecule That Mediates Acetaminophen-Induced Liver Injury― Journal of Immunology, 2011, 187, 6168-6168.	0.4	3
380	Benzyl Alcohol: A novel treatment for acetaminophen overdose?. Hepatology, 2015, 62, 1641-1642.	3.6	3
381	Comments on Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 1732-1733.	2.4	3
382	Emerging novel therapies against paracetamol (acetaminophen) hepatotoxicity. EBioMedicine, 2019, 46, 9-10.	2.7	3
383	Acetaminophen is both bronchodilatory and bronchoprotective in human precision cut lung slice airways. Xenobiotica, 2019, 49, 1106-1115.	0.5	3
384	p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1387-1404.	2.3	3
385	Environmental Liver Toxins. , 2019, , 578-584.		3
386	Platanosides, a Potential Botanical Drug Combination, Decrease Liver Injury Caused by Acetaminophen Overdose in Mice. Journal of Natural Products, 2022, 85, 1779-1788.	1.5	3
387	Regulation of apoptotic signaling pathways in hepatocytes <i>in vivo</i> . Hepatology, 2003, 37, 942-945.	3.6	2
388	Comments on "Glycogen Synthase Kinase-3 Mediates Acetaminophen-Induced Apoptosis in Human Hepatoma Cells― Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1401-1402.	1.3	2
389	Heme oxygenaseâ€1 and platelets in hepatic ischemia reperfusion injury. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 756-757.	1.4	2
390	Experimental Models of Hepatotoxicity for the Testing of Natural Products. , 2016, , .		2
391	Neurologic cues modulate immuneâ€mediated liver injury and regeneration. Hepatology, 2016, 63, 1427-1429.	3.6	2
392	Immune Mechanisms in Drug-Induced Liver Injury. Methods in Pharmacology and Toxicology, 2018, , 511-531.	0.1	2
393	Is Keratin-18 only a marker of cell death in acute-on-chronic liver failure?. Journal of Laboratory and Precision Medicine, 2018, 3, 26-26.	1.1	2
394	Antioxidant Defense Mechanisms. , 2018, , 277-295.		2
395	Does acetaminophen hepatotoxicity involve apoptosis, inflammatory liver injury, and lipid peroxidation?. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22718.	1.4	2
396	Mechanistic Biomarkers in Liver Diseases. Biomarkers in Disease, 2017, , 71-97.	0.0	2

#	Article	IF	CITATIONS
397	Acetaminophenâ€induced injury in HepaRG cells: a novel human cell line for studies of drug hepatotoxicity. FASEB Journal, 2010, 24, 759.9.	0.2	2
398	Targeting the sterile inflammatory response during acetaminophen hepatotoxicity with natural products. Toxicology Letters, 2022, 355, 170-171.	0.4	2
399	Protection against acetaminophen-induced liver injury with MG53: muscle-liver axis and necroptosis. Journal of Hepatology, 2022, , .	1.8	2
400	Acetaminophen Hepatotoxicity: Not as Simple as One Might Think! Introductory Comments on the Special Issue—Recent Advances in Acetaminophen Hepatotoxicity. Livers, 2022, 2, 105-107.	0.8	2
401	Kupffer cells and neutrophils contribute to hepatic ischemia/reperfusion (I/R) injury. Free Radical Biology and Medicine, 1990, 9, 95.	1.3	1
402	NASH-induced release of ferritin-bound iron and allyl alkohol-induced lipid peroxidation in vivo. Free Radical Biology and Medicine, 1990, 9, 180.	1.3	1
403	Reply:. Hepatology, 2001, 33, 1556-1557.	3.6	1
404	The importance of leptin in mice and man. Journal of Hepatology, 2004, 40, 359-361.	1.8	1
405	DAMPen danger signals: Novel therapeutic strategies against postischemic inflammation*. Critical Care Medicine, 2010, 38, 998-999.	0.4	1
406	Interleukin-4 and acetaminophen hepatotoxicity: a story of conflicting results and conclusions. Inflammation Research, 2014, 63, 171-172.	1.6	1
407	Acetaminophen knocks on death's door and receptor interacting protein 1 kinase answers. Hepatology, 2015, 62, 1664-1666.	3.6	1
408	Oxidative Stress in Acute Liver Failure. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 199-214.	0.4	1
409	Commentary to Choi et al. (2015): CCR5 knockout mice with C57BL6 background are resistant to acetaminophen-mediated hepatotoxicity due to decreased macrophages migration into the liver. Archives of Toxicology, 2015, 89, 807-808.	1.9	1
410	An Expert Roundtable Discussion on Mitochondrial Toxicity. Applied in Vitro Toxicology, 2019, 5, 167-172.	0.6	1
411	Letter to the Editor: Does câ€Jun Nâ€Terminal Kinase Regulate Acetaminophen Hepatotoxicity by Modulating Nuclear Factor Erythroid 2–Related Factor 2–Dependent Genes or Mitochondrial Oxidant Stress?. Hepatology, 2021, 73, 467-468.	3.6	1
412	Mechanistic Biomarkers in Liver Diseases. Exposure and Health, 2016, , 1-27.	2.8	1
413	Oxidant Stress and Drug-Induced Hepatotoxicity. , 2014, , 1757-1785.		1
414	PROTECTION OF HEPATIC ENDOTHELIUM AGAINST REPERFUSION INJURY BY TIRILAZAD MESYLATE. Shock, 1995, 3, 14.	1.0	1

#	Article	IF	CITATIONS
415	The Inflammatory Response After Hepatic Ischemia/Reperfusion. , 2020, , 127-147.		1
416	Comments on "DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders.― Chemico-Biological Interactions, 2022, 351, 109761.	1.7	1
417	Commentary on â€~Isolated cells in the study of the molecular mechanisms of reperfusion injury' by H. de Groot. Toxicology Letters, 1992, 63, 107-110.	0.4	0
418	TRANSCRIPTIONAL ACTIVATION OF HEPATIC P-SELECTIN GENE AND ITS ROLE IN THE PATHOPHYSIOLOGY OF ENDOTOXIN- INDUCED LIVER INJURY Shock, 1997, 7, 62.	1.0	0
419	Anti-selectin therapy against hepatic ischemia-reperfusion injury. Hepatology, 2003, 37, 220-222.	3.6	0
420	MECHANISMS OF INFLAMMATORY LIVER INJURY. Shock, 2004, 21, 84.	1.0	0
421	Therapeutic strategies against ischemia–reperfusion injury. Critical Care Medicine, 2012, 40, 1381-1382.	0.4	0
422	Acetaminophen-induced liver injury in experimental animals and humans. Clinical Therapeutics, 2013, 35, e119.	1.1	0
423	Innovative Pharmacological/Therapeutic Approaches against Hepatic Ischemia/Reperfusion Injury. BioMed Research International, 2015, 2015, 1-2.	0.9	0
424	Noncoding RNAs as therapeutics for acetaminophen-induced liver injury. Stem Cell Investigation, 2016, 3, 54-54.	1.3	0
425	Mechanisms of Acetaminophen-Induced Liver Injury. , 2017, , 55-76.		0
426	Mechanisms of Acetaminophen Hepatotoxicity: Cell Death Signaling Mechanisms in Hepatocytes. , 2018, , 460-482.		0
427	Hepatotoxins. , 2020, , 204-208.		0
428	Letter to the Editor Regarding the Article "Chrysin Effect in Prevention of Acetaminophen-Induced Hepatotoxicity in Rat―by Mohammadi and Co-Workers (2019). Chemical Research in Toxicology, 2020, 33, 689-690.	1.7	0
429	Livers: A New Open Access Forum for Liver Research. Livers, 2021, 1, 1-2.	0.8	0
430	Dual role of p62/SQSTM1 in acetaminophenâ€induced early acute injury and late recovery in mice. FASEB Journal, 2021, 35, .	0.2	0
431	Toxicant-Induced Liver Injury. Molecular Pathology Library, 2011, , 641-653.	0.1	0
432	Liver Specific Knockout Atg5 Causes Persistent Activation of Nrf2 and Protects Against Acetaminophenâ€Induced Liver Injury. FASEB Journal, 2012, 26, 396.3.	0.2	0

#	Article	IF	CITATIONS
433	Liver Toxicity. , 2014, , .		Ο
434	Receptor Interacting Protein Kinase 3 Deficiency Exacerbates Cholestatic Liver Injury in Mice. FASEB Journal, 2015, 29, 53.8.	0.2	0
435	Lack of direct cytotoxicity of extracellular ATP against hepatocytes: role in the mechanism of acetaminophen hepatotoxicity. Journal of Clinical and Translational Research, 2015, 1, 1-7.	0.3	Ο
436	Monoclonal antibody against the CD18 adhesion molecule stimulates glucose uptake by the liver and hepatic nonparenchymal cells. Hepatology, 1993, 17, 924-31.	3.6	0