Cheng-Wei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655657/publications.pdf

Version: 2024-02-01

		394421	477307
35	932	19	29
papers	citations	h-index	g-index
38	38	38	767
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in <i>Caenorhabditis elegans</i> Caenorhabditis elegans	2.9	84
2	Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels. Journal of Experimental Biology, 2012, 215, 1720-1727.	1.7	70
3	Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle, 2012, 11, 1714-1726.	2.6	59
4	The Skp1 Homologs SKR-1/2 Are Required for the Caenorhabditis elegans SKN-1 Antioxidant/Detoxification Response Independently of p38 MAPK. PLoS Genetics, 2016, 12, e1006361.	3.5	55
5	Life in the cold: links between mammalian hibernation and longevity. Biomolecular Concepts, 2016, 7, 41-52.	2.2	53
6	Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. Brazilian Journal of Medical and Biological Research, 2013, 46, 1-13.	1.5	44
7	Dehydration mediated microRNA response in the African clawed frog Xenopus laevis. Gene, 2013, 529, 269-275.	2.2	43
8	High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem–loop reverse transcription polymerase chain reaction. Analytical Biochemistry, 2014, 462, 32-34.	2.4	43
9	Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels. Genomics, Proteomics and Bioinformatics, 2014, 12, 284-291.	6.9	36
10	Induction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus. Genomics, Proteomics and Bioinformatics, 2015, 13, 119-126.	6.9	36
11	Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Physiological Genomics, 2016, 48, 388-396.	2.3	31
12	FoxO3a-mediated activation of stress responsive genes during early torpor in a mammalian hibernator. Molecular and Cellular Biochemistry, 2014, 390, 185-195.	3.1	30
13	Primate Torpor: Regulation of Stress-activated Protein Kinases During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus. Genomics, Proteomics and Bioinformatics, 2015, 13, 81-90.	6.9	30
14	Regulation of the PI3K/AKT Pathway and Fuel Utilization During Primate Torpor in the Gray Mouse Lemur, Microcebus murinus. Genomics, Proteomics and Bioinformatics, 2015, 13, 91-102.	6.9	29
15	Stress response and adaptation: A new molecular toolkit for the 21st century. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2013, 165, 417-428.	1.8	23
16	F-Box Protein XREP-4 Is a New Regulator of the Oxidative Stress Response in <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 859-871.	2.9	23
17	Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica. Cell Stress and Chaperones, 2018, 23, 1205-1217.	2.9	23
18	RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress. BMC Biology, 2019, 17, 56.	3.8	23

#	Article	IF	Citations
19	Regulation of Torpor in the Gray Mouse Lemur: Transcriptional and Translational Controls and Role of AMPK Signaling. Genomics, Proteomics and Bioinformatics, 2015, 13, 103-110.	6.9	22
20	Torporâ€responsive expression of novel microRNA regulating metabolism and other cellular pathways in the thirteenâ€lined ground squirrel, <i>lctidomys tridecemlineatus</i> . FEBS Letters, 2016, 590, 3574-3582.	2.8	22
21	Neuron-specific toxicity of chronic acrylamide exposure in C. elegans. Neurotoxicology and Teratology, 2020, 77, 106848.	2.4	19
22	Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus. Genomics, Proteomics and Bioinformatics, 2015, 13, 111-118.	6.9	18
23	mTOR Signaling in Metabolic Stress Adaptation. Biomolecules, 2021, 11, 681.	4.0	18
24	The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation. Cell Stress and Chaperones, 2014, 19, 813-825.	2.9	13
25	The squirrel with the lagging eIF2: Global suppression of protein synthesis during torpor. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 227, 161-171.	1.8	12
26	Regulation of the insulin–Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog <i>Xenopus laevis</i> . Biochemistry and Cell Biology, 2017, 95, 663-671.	2.0	11
27	Molecular control of protein synthesis, glucose metabolism, and apoptosis in the brain of hibernating thirteen-lined ground squirrels. Biochemistry and Cell Biology, 2019, 97, 536-544.	2.0	10
28	Transcriptional Activation of p53 during Cold Induced Torpor in the 13-Lined Ground Squirrellctidomys tridecemlineatus. Biochemistry Research International, 2015, 2015, 1-11.	3.3	9
29	Regulation of Smad mediated microRNA transcriptional response in ground squirrels during hibernation. Molecular and Cellular Biochemistry, 2018, 439, 151-161.	3.1	9
30	Post-translational regulation of PTEN catalytic function and protein stability in the hibernating 13-lined ground squirrel. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2196-2202.	2.4	8
31	Carb-Loading: Freeze-Induced Activation of the Glucose-Responsive ChREBP Transcriptional Network in Wood Frogs. Physiological and Biochemical Zoology, 2020, 93, 49-61.	1.5	7
32	Translational suppression via IFG-1/eIF4G inhibits stress-induced RNA alternative splicing in <i>Caenorhabditis elegans</i> . Genetics, 2022, 221, .	2.9	6
33	Effects of hibernation on regulation of mammalian protein phosphatase type-2-A. Cryobiology, 2013, 66, 267-274.	0.7	5
34	Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 246-247, 110461.	1.6	4
35	Molecular characterization of ethyl carbamate toxicity in Caenorhabditis elegans. Toxicology Reports, 2022, 9, 619-627.	3.3	2

3