Jingwen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6556410/publications.pdf

Version: 2024-02-01

		218677	315739
38	5,965	26	38
papers	citations	h-index	g-index
38	38	38	5042
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy and Environmental Science, 2019, 12, 1938-1949.	30.8	1,309
2	All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5, 139-164.	18.0	768
3	Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nature Communications, 2019, 10, 5374.	12.8	573
4	"Water-in-deep eutectic solvent―electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57, 625-634.	16.0	467
5	Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. Joule, 2020, 4, 1557-1574.	24.0	429
6	High-voltage and free-standing poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 552 Td (carbonate)/Li <sub:< td=""><td></td><td></td></sub:<>		
6	composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 2017, 5, 4940-4948.	10.3	373
7	Lithium Ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies. Advanced Energy Materials, 2018, 8, 1801243.	19.5	207
8	Hierarchical CoNiâ€Sulfide Nanosheet Arrays Derived from Layered Double Hydroxides toward Efficient Hydrazine Electrooxidation. Advanced Materials, 2017, 29, 1604080.	21.0	196
9	Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni ₃ S ₂ Nanosheets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26396-26399.	8.0	173
10	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie - International Edition, 2017, 56, 7871-7875.	13.8	141
11	High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of "water-in-salt― electrolyte. Electrochemistry Communications, 2016, 69, 6-10.	4.7	137
12	Pursuit of reversible Zn electrochemistry: a time-honored challenge towards low-cost and green energy storage. NPG Asia Materials, 2020, 12, .	7.9	129
13	Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode. Energy Storage Materials, 2020, 28, 64-72.	18.0	105
14	Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. Journal of Materials Chemistry A, 2016, 4, 11516-11523.	10.3	104
15	Uncovering the Potential of M1â€Siteâ€Activated NASICON Cathodes for Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1907526.	21.0	103
16	A Crosslinked Polytetrahydrofuranâ€Borateâ€Based Polymer Electrolyte Enabling Wideâ€Workingâ€Temperatureâ€Range Rechargeable Magnesium Batteries. Advanced Materials, 2019, 31, e1805930.	21.0	95
17	Selfâ€Assembled Solidâ€State Gel Catholyte Combating Iodide Diffusion and Selfâ€Discharge for a Stable Flexible Aqueous Zn–I ₂ Battery. Advanced Energy Materials, 2020, 10, 2001997.	19.5	86
18	Singleâ€Ionâ€Functionalized Nanocellulose Membranes Enable Leanâ€Electrolyte and Deeply Cycled Aqueous Zincâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	63

#	Article	IF	CITATIONS
19	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie, 2017, 129, 7979-7983.	2.0	59
20	Anion Solvation Reconfiguration Enables Highâ€Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells. Angewandte Chemie - International Edition, 2020, 59, 21769-21777.	13.8	58
21	Ionicâ€Associationâ€Assisted Viscoelastic Nylon Electrolytes Enable Synchronously Coupled Interface for Solid Batteries. Advanced Functional Materials, 2020, 30, 2000347.	14.9	44
22	Fast anion intercalation into graphite cathode enabling high-rate rechargeable zinc batteries. Journal of Power Sources, 2020, 457, 227994.	7.8	42
23	Eutectic Crystallization Activates Solidâ€State Zincâ€Ion Conduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
24	Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries. Electrochimica Acta, 2018, 280, 108-113.	5.2	36
25	A PF ₆ ^{â^'} â€Permselective Polymer Electrolyte with Anion Solvation Regulation Enabling Longâ€Cycle Dualâ€Ion Battery. Advanced Materials, 2022, 34, e2108665.	21.0	35
26	In-situ formed all-amorphous poly (ethylene oxide)-based electrolytes enabling solid-state Zn electrochemistry. Chemical Engineering Journal, 2021, 417, 128096.	12.7	28
27	Chargeâ€Compensation in a Displacement Mg ²⁺ Storage Cathode through Polyselenideâ€Mediated Anion Redox. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
28	Graphene boosted Cu ₂ GeS ₃ for advanced lithium-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 541-546.	6.0	22
29	Water-Locked Eutectic Electrolyte Enables Long-Cycling Aqueous Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33041-33051.	8.0	21
30	Delicately Tailored Ternary Phosphate Electrolyte Promotes Ultrastable Cycling of Na ₃ V ₂ (PO ₄) ₂ F ₃ -Based Sodium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17444-17453.	8.0	20
31	Unraveling H ⁺ /Zn ²⁺ Sequential Conversion Reactions in Tellurium Cathodes for Rechargeable Aqueous Zinc Batteries. Journal of Physical Chemistry Letters, 2021, 12, 10163-10168.	4.6	19
32	Room-temperature fast zinc-ion conduction in molecule-flexible solids. Materials Today Energy, 2021, 20, 100630.	4.7	16
33	Anion Solvation Reconfiguration Enables Highâ€Voltage Carbonate Electrolytes for Stable Zn/Graphite Cells. Angewandte Chemie, 2020, 132, 21953-21961.	2.0	11
34	A High-Energy 5 V-Class Flexible Lithium-Ion Battery Endowed by Laser-Drilled Flexible Integrated Graphite Film. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9468-9477.	8.0	10
35	Stimulus-responsive polymers for safe batteries and smart electronics. Science China Materials, 2022, 65, 2060-2071.	6.3	10
36	Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries. Chemical Research in Chinese Universities, 2021, 37, 328-334.	2.6	5

#	Article	IF	CITATIONS
37	Eutectic Crystallization Activates Solidâ€State Zincâ€Ion Conduction. Angewandte Chemie, 2022, 134, .	2.0	2
38	Chargeâ€Compensation in a Displacement Mg ²⁺ Storage Cathode through Polyselenideâ€Mediated Anion Redox. Angewandte Chemie, 2022, 134, .	2.0	1