
Wanqun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6555478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A steady modeling method to study the effect of fluid–structure interaction on the thrust stiffness of an aerostatic spindle. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 453-468.	1.5	4
2	Investigation on the Micro Cutting Mechanism and Surface Topography Generation in Ultraprecision Diamond Turning. Micromachines, 2022, 13, 381.	1.4	4
3	Influence of Unbalanced Electromagnetic Force and Air Supply Pressure Fluctuation in Air Bearing Spindles on Machining Surface Topography. International Journal of Precision Engineering and Manufacturing, 2021, 22, 1-12.	1.1	10
4	Investigation on the formation mechanism and controlling method of machined surface topography of ultra-precision flycutting machining. International Journal of Advanced Manufacturing Technology, 2020, 106, 3311-3320.	1.5	7
5	Review of vibration devices for vibration-assisted machining. International Journal of Advanced Manufacturing Technology, 2020, 108, 1631-1651.	1.5	40
6	Investigation on the Tool Wear Suppression Mechanism in Non-Resonant Vibration-Assisted Micro Milling. Micromachines, 2020, 11, 380.	1.4	13
7	Experimental investigation on burr formation in vibration-assisted micro-milling of Ti-6Al-4V. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 4112-4119.	1.1	18
8	Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling. International Journal of Advanced Manufacturing Technology, 2019, 105, 4539-4549.	1.5	31
9	Theoretical prediction and experimental verification of the unbalanced magnetic force in air bearing motor spindles. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 2330-2344.	1.5	10
10	Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Tribology International, 2019, 135, 1-17.	3.0	103
11	An Mechatronics Coupling Design Approach for Aerostatic Bearing Spindles. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1185-1196.	1.1	11
12	Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs. International Journal of Advanced Manufacturing Technology, 2019, 100, 1393-1404.	1.5	26
13	Investigation on cutting mechanism of SiCp/Al composites in precision turning. International Journal of Advanced Manufacturing Technology, 2019, 100, 963-972.	1.5	30
14	An experimental study on tool wear behaviour in micro milling of nano Mg/Ti metal matrix composites. International Journal of Advanced Manufacturing Technology, 2018, 96, 2127-2140.	1.5	27
15	Burr reduction mechanism in vibration-assisted micro milling. Manufacturing Letters, 2018, 16, 6-9.	1.1	30
16	Surface texture formation by non-resonant vibration assisted micro milling. Journal of Micromechanics and Microengineering, 2018, 28, 025006.	1.5	46
17	Dynamic design and thermal analysis of an ultra-precision flycutting machine tool. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 404-411.	1.5	7
18	Measurement and analysis for frequency domain error of ultra-precision spindle in a flycutting machine tool. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 1501-1507.	1.5	39

WANQUN CHEN

#	Article	IF	CITATIONS
19	Effect of motor rotor eccentricity on aerostatic spindle vibration in machining processes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 1331-1342.	1.1	21
20	Optimal design of an annular thrust air bearing using parametric computational fluid dynamics model and genetic algorithms. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 1203-1214.	1.0	10
21	Cutting Mechanism Investigation in Vibration-Assisted Machining. Nanomanufacturing and Metrology, 2018, 1, 268-276.	1.5	10
22	State-of-the-art review on vibration-assisted milling: principle, system design, and application. International Journal of Advanced Manufacturing Technology, 2018, 97, 2033-2049.	1.5	52
23	A New Surface Topography-Based Method to Quantify Axial Error of High Speed Milling Cutters. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	8
24	Influence of ultra-precision flycutting spindle error on surface frequency domain error formation. International Journal of Advanced Manufacturing Technology, 2017, 88, 3233-3241.	1.5	30
25	Investigation on the fluid–structure interaction effect of an aerostatic spindle and the influence of structural dimensions on its performance. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1434-1440.	1.0	18
26	Multi-physics coupling analysis of an aerostatic spindle. Advances in Mechanical Engineering, 2017, 9, 168781401770186.	0.8	3
27	An improved cutting force model for micro milling considering machining dynamics. International Journal of Advanced Manufacturing Technology, 2017, 93, 3005-3016.	1.5	26
28	External aerodynamic force on an ultra-precision diamond fly-cutting machine tool for KDP crystal machining. International Journal of Advanced Manufacturing Technology, 2017, 93, 4169-4178.	1.5	9
29	A novel simulation method for interaction of machining process and machine tool structure. International Journal of Advanced Manufacturing Technology, 2017, 88, 3467-3474.	1.5	7
30	Modeling the Influence of Tool Deflection on Cutting Force and Surface Generation in Micro-Milling. Micromachines, 2017, 8, 188.	1.4	32
31	Optimal design of an aerostatic spindle based on fluid–structure interaction method and its verification. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 690-696.	1.0	16
32	Aerostatic thrust bearing performances analysis considering the fluid-structure coupling effect. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 1588-1596.	1.0	16
33	An experimental and theoretical investigation into multimode machine tool vibration with surface generation in flycutting. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230, 381-386.	1.5	18
34	A two-round design method for ultra-precision flycutting machine tools with stringent process requirements. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 1584-1594.	1.5	7
35	An integrated method for waviness simulation on large-size surface. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 178-182.	1.5	12
36	Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. International Journal of Advanced Manufacturing Technology, 2015, 76, 635-645.	1.5	24

WANQUN CHEN

#	Article	IF	CITATIONS
37	Dynamic error budget analysis of an ultraprecision flycutting machine tool. International Journal of Advanced Manufacturing Technology, 2015, 76, 1215-1224.	1.5	12
38	A novel machine tool design approach based on surface generation simulation and its implementation on a fly cutting machine tool. International Journal of Advanced Manufacturing Technology, 2015, 80, 829-837.	1.5	14
39	An integrated system for ultra-precision machine tool design in conceptual and fundamental design stage. International Journal of Advanced Manufacturing Technology, 2015, 84, 1177.	1.5	5
40	Flatness improving method of KDP crystal in ICF system and its implementation in machine tool design. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2015, 229, 327-332.	1.4	6
41	Modeling and simulation of the interaction of manufacturing process and machine tool structure in flycutting machining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229, 2730-2736.	1.1	7
42	Investigation of the influence of constant pressure oil source fluctuations on ultra-precision machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 372-376.	1.5	11
43	Investigation of the tool-tip vibration and its influence upon surface generation in flycutting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228, 2162-2167.	1.1	14
44	A mechanical structure-based design method and its implementation on a fly-cutting machine tool design. International Journal of Advanced Manufacturing Technology, 2014, 70, 1915-1921.	1.5	20
45	Design philosophy of an ultra-precision fly cutting machine tool for KDP crystal machining and its implementation on the structure design. International Journal of Advanced Manufacturing Technology, 2014, 70, 429-438.	1.5	25
46	Multi-scale surface simulation of the KDP crystal fly cutting machining. International Journal of Advanced Manufacturing Technology, 2014, 73, 289-297.	1.5	19
47	Investigation on the Influence of Machine Tool Dynamics on the Wavefront Gradient of KH2PO4 Crystals. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	1.3	10
48	An integrated dynamic design system for aerostatic spindle development. , 2014, , .		0
49	Design and dynamic optimization of an ultraprecision diamond flycutting machine tool for large KDP crystal machining. International Journal of Advanced Manufacturing Technology, 2013, 69, 237-244.	1.5	66
50	Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. International Journal of Advanced Manufacturing Technology, 2013, 68, 2525-2534.	1.5	98
51	Dynamics design optimization and experimental validation of a miniaturized machine tool for micro-milling. Production Engineering, 2013, 7, 477-482.	1.1	6
52	Dynamic design approach of an ultra-precision machine tool used for optical parts machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226, 1930-1936.	1,5	41