
Wenbing Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6555353/publications.pdf Version: 2024-02-01

WENRING SU

#	Article	IF	CITATIONS
1	Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
2	The Role of EjSOC1s in Flower Initiation in Eriobotrya japonica. Frontiers in Plant Science, 2019, 10, 253.	3.6	26
3	The Role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in Regulating Flowering in Loquat (Eriobotrya japonica) Tj ETQq1	0.784314 4.1	4 rgBT /Ove 22
4	Selection of the optimal reference genes for expression analyses in different materials of Eriobotrya japonica. Plant Methods, 2019, 15, 7.	4.3	18
5	EjTFL1 Genes Promote Growth but Inhibit Flower Bud Differentiation in Loquat. Frontiers in Plant Science, 2020, 11, 576.	3.6	18
6	EjBZR1 represses fruit enlargement by binding to the <i>EjCYP90</i> promoter in loquat. Horticulture Research, 2021, 8, 152.	6.3	18
7	The cellular physiology of loquat (Eriobotrya japonica Lindl.) fruit with a focus on how cell division and cell expansion processes contribute to pome morphogenesis. Scientia Horticulturae, 2017, 224, 142-149.	3.6	17
8	Functional characterization of GI and CO homologs from Eriobotrya deflexa Nakai forma koshunensis. Plant Cell Reports, 2019, 38, 533-543.	5.6	16
9	Differential gene expression between the vigorous and dwarf litchi cultivars based on RNA-Seq transcriptome analysis. PLoS ONE, 2018, 13, e0208771.	2.5	12
10	Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat. Horticulture Research, 2022, , .	6.3	12
11	EjRAV1/2 Delay Flowering Through Transcriptional Repression of EjFTs and EjSOC1s in Loquat. Frontiers in Plant Science, 2021, 12, 816086.	3.6	5
12	Gibberellin Induced Transcriptome Profiles Reveal Gene Regulation of Loquat Flowering. Frontiers in Genetics, 2021, 12, 703688.	2.3	4
13	EjFWLs are repressors of cell division during early fruit morphogenesis of loquat. Scientia Horticulturae, 2021, 287, 110261.	3.6	3
14	Method for fast staining and obtaining high-magnification and high-resolution cell images of Nicotiana benthamiana. Physiology and Molecular Biology of Plants, 2021, 27, 181-188.	3.1	3
15	Integrated analysis of the metabolome, transcriptome and miRNome reveals crucial roles of auxin and heat shock proteins in the heat stress response of loquat fruit. Scientia Horticulturae, 2022, 294, 110764.	3.6	3