Mustapha Diani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6555176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance evaluation and analysis of polycrystalline photovoltaic plant located in Northern Morocco. International Journal of Ambient Energy, 2022, 43, 1262-1268.	2.5	10
2	Electronic structure, optical and thermoelectric properties of Ge2SeS monolayer via first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 115022.	2.7	15
3	Efficient planar heterojunction based on α-sexithiophene/fullerene through the use of MoO3/CuI anode buffer layer. Thin Solid Films, 2022, 741, 139025.	1.8	6

First-principles study on electronic and thermoelectric properties of Janus monolayers AsXC3 (X: Sb,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

4		2.1	10
5	First-principles calculations to investigate structural, electronic and optical properties of Janus AsMC3 (M: Sb, Bi) monolayers for optoelectronic applications. Solid State Communications, 2022, 343, 114667.	1.9	10
6	First-principles investigations of structural, electronic and thermoelectric properties of Sb/Bi2Se3 van der Waals heterostructure. Materials Science in Semiconductor Processing, 2022, 142, 106472.	4.0	6
7	Strain effects on the structural, electronic, optical and thermoelectric properties of <scp>Si₂SeS</scp> monolayer with puckered honeycomb structure: A firstâ€principles study. International Journal of Quantum Chemistry, 2022, 122, .	2.0	9
8	Effect of indium doping on the structural, optical and electrochemical behaviors of CeO2 nanocrystalline thin films. Optical Materials, 2022, 127, 112312.	3.6	7
9	Oxygen vacancies and defects tailored microstructural, optical and electrochemical properties of Gd doped CeO2 nanocrystalline thin films. Materials Science in Semiconductor Processing, 2022, 145, 106631.	4.0	20
10	Tunable properties of the stable SiSeS Janus monolayer under biaxial strain: First-principles prediction. Optik, 2022, 261, 169123.	2.9	5
11	Performance evaluation and experimental validation of different empirical models for predicting photovoltaic output power. International Journal of Ambient Energy, 2022, 43, 7437-7453.	2.5	2
12	First-principles investigations of structural, electronic and thermoelectric properties of β-Sb/Gel2 van der Waals heterostructures. Journal of Computational Electronics, 2022, 21, 582-589.	2.5	2
13	First-principles prediction of stable Janus BiSbC3 monolayer with tunable electronic and optical properties under strain. Computational Condensed Matter, 2022, 31, e00687.	2.1	6
14	High thermoelectric figure of merit for GeS/phosphorene 2D heterostructures: A first-principles study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 281, 115737.	3.5	6
15	Biaxial strain engineering of the electronic and optical properties of Ge2SeS monolayer: Promising for optoelectronic applications. Computational Condensed Matter, 2022, 32, e00717.	2.1	4
16	Strain enhanced electronic and optical properties in Janus monolayers AsMC3 (M: Sb, Bi). Physica B: Condensed Matter, 2022, 642, 414143.	2.7	3
17	Physical properties and electrochemical behavior of thin layers of vanadium doped cerium dioxide. Surfaces and Interfaces, 2021, 23, 100906.	3.0	6
18	Na adsorption on bismuthene monolayer for battery applications: A first-principles study. FlatChem, 2021, 27, 100251.	5.6	7

Mustapha Diani

#	Article	IF	CITATIONS
19	Synthesis, structural and optical characteristics of vanadium doped cerium dioxide layers. Materialia, 2021, 18, 101143.	2.7	9
20	A First-Principles Investigation on Electronic Structure, Optical and Thermoelectric Properties of Janus In2SeTe Monolayer. Journal of Superconductivity and Novel Magnetism, 2021, 34, 3279-3290.	1.8	23
21	Investigation of aluminum phthalocyanine chloride as acceptor material in planar organic solar cells: comparative study with fullerene. Journal of Materials Science: Materials in Electronics, 2021, 32, 27710.	2.2	3
22	Undulated silicene and germanene freestanding layers: why not?. Journal of Physics Condensed Matter, 2020, 32, 195503.	1.8	7
23	Experimental molecular adsorption: electronic buffer effect of germanene on Al(1 1 1). 2D Materials, 2019, 6, 035016.	4.4	4
24	Using strain to control molecule chemisorption on silicene. Journal of Chemical Physics, 2017, 147, 044705.	3.0	8
25	Tailoring the germanene–substrate interactions by means of hydrogenation. Physical Chemistry Chemical Physics, 2016, 18, 15667-15672.	2.8	10
26	Growth of Fe nanocrystals on LaAlO3 (001) and epitaxial relationship determination by RHEED and XPS. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1393-1396.	0.8	2
27	Epitaxial growth of Fe islands on LaAlO3 (001) substrates. Journal of Crystal Growth, 2014, 391, 121-129.	1.5	0
28	Si and Ge nanostructures epitaxy on a crystalline insulating LaAlO ₃ (001) substrate. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 657-662.	1.8	4
29	Chemical and structural transformations of silicon submitted to H2 or H2/CH4 microwave plasmas. Diamond and Related Materials, 2008, 17, 428-434.	3.9	1
30	Original Ge-induced phenomena on various SiC(0 0 0 1) reconstructions. Journal Physics D: Applied Physics, 2007, 40, 6225-6241.	2.8	6
31	Epitaxy relationships between Ge-islands and SiC(0001). Applied Surface Science, 2005, 241, 403-411.	6.1	6
32	Ge epitaxial island growth on a graphitized C-rich 4H-SiC(0001) surface. Journal of Crystal Growth, 2005, 275, e2275-e2280.	1.5	3
33	A structural parallel between Ge- and Si-induced 4×4 and 3×3 reconstructions on SiC(0001) drawn from comparative RHEED oscillations. Surface Science, 2004, 565, 57-69.	1.9	5
34	Ge quantum dots on a large band gap semiconductor: the first growth stages on 4H–SiC(0001). Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 428-434.	2.7	9
35	Influence of the surface-termination of hexagonal SiC(0001) on the temperature dependences of Ge growth modes and desorption. Surface Science, 2003, 546, 1-11.	1.9	8
36	6H- AND 4H-SiC(0001) Si SURFACE RICHNESS DOSING BY HYDROGEN ETCHING: A WAY TO REDUCE THE FORMATION TEMPERATURE OF RECONSTRUCTIONS. Surface Review and Letters, 2003, 10, 55-63.	1.1	8

Mustapha Diani

#	Article	IF	CITATIONS
37	Crystal growth of 3C–SiC polytype on 6H–SiC(0001) substrate. Journal of Crystal Growth, 2002, 235, 95-102.	1.5	13
38	Observation of Si out-diffusion related defects in SiC growth on Si(001). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 29, 110-113.	3.5	11
39	A particular epitaxial Si1 â^' yCy alloy growth mode on Si(001) evidenced by cross-sectional transmission electron microscopy. Journal of Crystal Growth, 1995, 157, 420-425.	1.5	24
40	Synthesis of epitaxial Si1 â^' yCy alloys on Si(001) with high level of non-usual substitutional carbon incorporation. Journal of Crystal Growth, 1995, 157, 431-435.	1.5	10
41	Strong element dependence of C 1s and Si 2p X-ray photoelectron diffraction profiles for identical C and Si local geometries in β-SiC. Surface Science, 1995, 339, 363-371.	1.9	20
42	Selective thermal — as opposed to non-selective plasma — nitridation of Siî—,Ge related materials examined by in situ photoemission techniques. Journal of Non-Crystalline Solids, 1995, 187, 319-323.	3.1	15
43	Electron cyclotron resonance plasma ion beam effects on the formation of SiC on Si(001) characterized by in-situ photoemission. Thin Solid Films, 1994, 241, 305-309.	1.8	3
44	Reply to the comment on "Search for carbon nitride CNx compounds with a high nitrogen content by electron cyclotron resonance plasma depositionâ€, Diamond relat. mater., 3 (1994) 264–269. Diamond and Related Materials, 1994, 3, 1279.	3.9	1
45	Search for carbon nitride CNx compounds with a high nitrogen content by electron cyclotron resonance plasma deposition. Diamond and Related Materials, 1994, 3, 264-269.	3.9	67
46	ln-situ surface technique analyses and ex-situ characterization of Si1-xGex epilayers grown on Si(001)-2 ×1 by molecular beam epitaxy. Journal De Physique III, 1994, 4, 733-740.	0.3	5
47	X-ray photoelectron diffraction observation of \hat{l}^2 -SiC(001) obtained by electron cyclotron resonance plasma assisted growth on Si(001). Applied Surface Science, 1993, 68, 575-582.	6.1	23
48	The Ge Stranski-Krastanov growth mode on Si(001) (2 × 1) tested by X-ray photoelectron and Auger electron diffraction. Surface Science, 1993, 291, 110-116.	1.9	32
49	Xâ€ray photoelectron and Auger electron diffraction probing of Ge heteroepitaxy on Si (001) 2×1. Jo of Applied Physics, 1993, 73, 7412-7415.	urnal 2.5	8
50	An experimental characterization of Si(111) surfaces by Si 2p X-ray photoelectron diffraction. Solid State Communications, 1992, 83, 823-827.	1.9	12
51	Surface structure of Si(001) treated by hydrogen and argon electron cyclotron resonance plasmas. Applied Surface Science, 1992, 62, 67-75.	6.1	5
52	Synthesis, Structural and Optical Characteristics of Vanadium Doped Cerium Dioxide Layers. SSRN Electronic Journal, 0, , .	0.4	0