
Daisuke Shimamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon fiber sampling method for determining the fiber length distribution. Advanced Composite Materials, 2021, 30, 59-76.	1.0	7
2	Simultaneous evaluation of tensile strength and interfacial shear strength of short length carbon fibers using fragmentation test. Carbon, 2020, 161, 83-88.	5.4	9
3	The effects of pulverization treatment for the mechanical properties of polyamide 6 fiber filled with carbon nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 254, 114514.	1.7	4
4	Effect of wet-rotating disc milling process for preparation of stable dispersed Al2O3 slurries and dense green bodies. Materials Today: Proceedings, 2019, 16, 163-172.	0.9	0
5	Ceramic molds suitable for rapid forming of CFRP composites via microwave irradiation. International Journal of Applied Ceramic Technology, 2019, 16, 2380-2384.	1.1	1
6	Evaluation of measurement method for carbon fiber length using an optical image scanner. Advanced Composite Materials, 2018, 27, 605-614.	1.0	10
7	Thermal Response Analysis of Porous Carbon-based Non-Ablative Heatshield in an Arcjet Flow Condition. Transactions of the Japan Society for Aeronautical and Space Sciences, 2018, 61, 211-218.	0.4	3
8	Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation. Materials, 2018, 11, 493.	1.3	10
9	Exfoliation of non-swelling muscovite on dodecylammonium chloride intercalation between layers using wet-jet milling. Advanced Powder Technology, 2017, 28, 1911-1919.	2.0	8
10	Influence of Thermal Effusivity of Ceramic Dense Mold on Microwave-heating of Carbon Fiber Reinforced Plastic. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 532-537.	0.1	0
11	Analytical Evaluation on Mechanical Characteristics of Discontinuous Carbon Fiber Reinforced Thermoplastic Composites. The Proceedings of the Materials and Mechanics Conference, 2017, 2017, OS1010.	0.0	0
12	Quantitative evaluation of interfacial adhesion between fiber and resin in carbon fiber/epoxy composite cured by semiconductor microwave device. Composite Interfaces, 2016, 23, 395-404.	1.3	9
13	Effect of microwave irradiation on carbon fiber/epoxy resin composite fabricated by vacuum assisted resin transfer molding. Advanced Composite Materials, 2016, 25, 71-79.	1.0	12
14	Fiber orientation and flexural properties of short carbon fiber/epoxy composites. Journal of the Ceramic Society of Japan, 2016, 124, 125-128.	0.5	6
15	Improvement of thermal and mechanical properties of carbon fiber reinforced plastic composite with exfoliated hexagonal boron nitride particles. Journal of the Ceramic Society of Japan, 2016, 124, 808-812.	0.5	4
16	Exfoliation of hexagonal boron nitride using wet-rotating disc milling. Journal of the Ceramic Society of Japan, 2015, 123, 512-515.	0.5	8
17	Improvement of thermal propagation in carbon fiber/thermoplastic composite with hexagonal boron nitride powder. Journal of the Ceramic Society of Japan, 2015, 123, 1055-1058.	0.5	1
18	Wet-jet milling-assisted exfoliation of h-BN particles with lamination structure. Ceramics International, 2015, 41, 10512-10519.	2.3	20

DAISUKE SHIMAMOTO

#	Article	IF	CITATIONS
19	The Ni-plated carbon fiber as a tracer for observation of the fiber orientation in the carbon fiber reinforced plastic with X-ray CT. Composites Part B: Engineering, 2015, 76, 38-43.	5.9	15
20	Influence of kneading time on network formation and electrical properties of wet jet milling treated and untreated SWCNT reinforced polyamide 6 nanocomposites by impedance spectroscopy. Polymer, 2015, 80, 18-26.	1.8	2
21	Effect of wet jet milling of carbon nanotube on electrical properties of polymer nanocomposites. Materials Chemistry and Physics, 2014, 148, 1178-1183.	2.0	9
22	Relationship study between crystal structure and thermal/mechanical properties of polyamide 6 reinforced and unreinforced by carbon fiber from macro and local view. Polymer, 2014, 55, 6186-6194.	1.8	82
23	Suppression of thermal degradation for interface between carbon fiber and resin matrix in carbon fiber reinforced thermoplastic using hexagonal boron nitride. Journal of the Ceramic Society of Japan, 2014, 122, 732-735.	0.5	8
24	Kinetic Study of Resin-Curing on Carbon Fiber/Epoxy Resin Composites by Microwave Irradiation. Open Journal of Composite Materials, 2014, 04, 85-96.	0.4	8
25	Determination of the stacking order of curved few-layered graphene systems. Nanoscale, 2012, 4, 6419.	2.8	5
26	Chirality-Dependent Transport in Double-Walled Carbon Nanotube Assemblies: The Role of Inner Tubes. ACS Nano, 2011, 5, 7547-7554.	7.3	28
27	Bulk Synthesis of Narrow Diameter and Highly Crystalline Tripleâ€Walled Carbon Nanotubes by Coalescing Fullerene Peapods. Advanced Materials, 2011, 23, 1761-1764.	11.1	25
28	Optical Spectroscopic Studies of Thermally Coalesced Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3878-3883.	0.9	0
29	Boron Atoms as Loop Accelerator and Surface Stabilizer in Plateletâ€Type Carbon Nanofibers. ChemPhysChem, 2010, 11, 2345-2348.	1.0	15
30	A simple route to short cup-stacked carbon nanotubes by sonication. Carbon, 2010, 48, 3643-3647.	5.4	9
31	Sensitive G-Band Raman Features for the Electrical Conductivity of Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3940-3944.	0.9	6
32	Raman and Fluorescence Spectroscopic Studies of a DNA-Dispersed Double-Walled Carbon Nanotube Solution. ACS Nano, 2010, 4, 1060-1066.	7.3	25
33	Photocatalysis-induced selective decoration of semiconducting single walled carbon nanotubes: hole-doping effect. Chemical Communications, 2010, 46, 6977.	2.2	3
34	Synthesis of catalytic chemical vapor grown carbon fibers: carbon nanotube and carbon nanofiber. Tanso, 2010, 2010, 153-160.	0.1	3
35	Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Applied Physics Letters, 2009, 94, 083106.	1.5	34
36	Controlled growth of one-dimensional clusters of molybdenum atoms using double-walled carbon nanotube templating. Applied Physics Letters, 2009, 94, .	1.5	8

DAISUKE SHIMAMOTO

#	Article	IF	CITATIONS
37	Defectâ€Enhanced Dispersion of Carbon Nanotubes in DNA Solutions. ChemPhysChem, 2009, 10, 2414-2417.	1.0	18
38	Transparent and Conductive Polyethylene Oxide Film by the Introduction of Individualized Singleâ€Walled Carbon Nanotubes. Macromolecular Rapid Communications, 2009, 30, 2084-2088.	2.0	6
39	Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Đerived Doubleâ€Walled Carbon Nanotubes. Small, 2009, 5, 2678-2682.	5.2	38
40	Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters, 2009, 9, 1487-1492.	4.5	43
41	Correlation between in Situ Raman Scattering and Electrical Conductance for an Individual Double-Walled Carbon Nanotube. Nano Letters, 2009, 9, 383-387.	4.5	13
42	Optical studies of inner tubes within double-walled carbon nanotubes. Tanso, 2009, 2009, 172-179.	0.1	0
43	Raman study on electrochemical lithium insertion into multiwalled carbon nanotubes. Journal of Raman Spectroscopy, 2008, 39, 1183-1188.	1.2	9
44	Robust, Conducting, and Transparent Polymer Composites Using Surfaceâ€Modified and Individualized Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2008, 20, 4509-4512.	11.1	58
45	Diameter-selective separation of double-walled carbon nanotubes. Applied Physics Letters, 2008, 93, 223107.	1.5	18
46	Synthesis and Isolation of Molybdenum Atomic Wires. Nano Letters, 2008, 8, 237-240.	4.5	61
47	Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2008, 2, 485-488.	7.3	64
48	Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. Applied Physics Letters, 2008, 92, .	1.5	37
49	CdSe quantum dot-decorated double walled carbon nanotubes: The effect of chemical moieties. Applied Physics Letters, 2008, 93, 051901.	1.5	13
50	Hysteretic transfer characteristics of double-walled and single-walled carbon nanotube field-effect transistors. Applied Physics Letters, 2007, 91, 143118.	1.5	11