List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6554169/publications.pdf Version: 2024-02-01

7FLIKA KODADE

#	Article	IF	CITATIONS
1	Medication effects on developmental sterol biosynthesis. Molecular Psychiatry, 2022, 27, 490-501.	7.9	11
2	Ubiquitous Aberration in Cholesterol Metabolism across Pancreatic Ductal Adenocarcinoma. Metabolites, 2022, 12, 47.	2.9	7
3	Neonatal Hypoxic-Ischemic Brain Injury Alters Brain Acylcarnitine Levels in a Mouse Model. Metabolites, 2022, 12, 467.	2.9	4
4	Individual and simultaneous treatment with antipsychotic aripiprazole and antidepressant trazodone inhibit sterol biosynthesis in the adult brain. Journal of Lipid Research, 2022, 63, 100249.	4.2	5
5	Altered Cholesterol Biosynthesis Affects Drug Metabolism. ACS Omega, 2021, 6, 5490-5498.	3.5	1
6	Sterol Biosynthesis Inhibition in Pregnant Women Taking Prescription Medications. ACS Pharmacology and Translational Science, 2021, 4, 848-857.	4.9	6
7	Trazodone effects on developing brain. Translational Psychiatry, 2021, 11, 85.	4.8	13
8	Prescription Medications Alter Neuronal and Glial Cholesterol Synthesis. ACS Chemical Neuroscience, 2021, 12, 735-745.	3.5	16
9	Visualizing Cholesterol in the Brain by On-Tissue Derivatization and Quantitative Mass Spectrometry Imaging. Analytical Chemistry, 2021, 93, 4932-4943.	6.5	38
10	Interaction of maternal immune activation and genetic interneuronal inhibition. Brain Research, 2021, 1759, 147370.	2.2	4
11	Biochemical and Clinical Effects of Vitamin E Supplementation in Hungarian Smith-Lemli-Opitz Syndrome Patients. Biomolecules, 2021, 11, 1228.	4.0	2
12	Plasma Concentrations and Maternal-Umbilical Cord Plasma Ratios of the Six Most Prevalent Carotenoids across Five Groups of Birth Gestational Age. Antioxidants, 2021, 10, 1409.	5.1	3
13	Maternal cariprazine exposure inhibits embryonic and postnatal brain cholesterol biosynthesis. Molecular Psychiatry, 2020, 25, 2685-2694.	7.9	13
14	Amiodarone Alters Cholesterol Biosynthesis through Tissue-Dependent Inhibition of Emopamil Binding Protein and Dehydrocholesterol Reductase 24. ACS Chemical Neuroscience, 2020, 11, 1413-1423.	3.5	18
15	Cholesterol Biosynthesis and Uptake in Developing Neurons. ACS Chemical Neuroscience, 2019, 10, 3671-3681.	3.5	57
16	Desmosterolosis and desmosterol homeostasis in the developing mouse brain. Journal of Inherited Metabolic Disease, 2019, 42, 934-943.	3.6	17
17	Maternal aripiprazole exposure interacts with 7-dehydrocholesterol reductase mutations and alters embryonic neurodevelopment. Molecular Psychiatry, 2019, 24, 491-500.	7.9	20
18	Subcellular localization of sterol biosynthesis enzymes. Journal of Molecular Histology, 2019, 50, 63-73.	2.2	10

#	Article	IF	CITATIONS
19	Dichlorophenyl piperazines, including a recently-approved atypical antipsychotic, are potent inhibitors of DHCR7, the last enzyme in cholesterol biosynthesis. Toxicology and Applied Pharmacology, 2018, 349, 21-28.	2.8	24
20	Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol. Journal of Lipid Research, 2018, 59, 1916-1926.	4.2	28
21	Oxidative stress, serotonergic changes and decreased ultrasonic vocalizations in a mouse model of <scp>S</scp> mith– <scp>L</scp> emli– <scp>O</scp> pitz syndrome. Genes, Brain and Behavior, 2017, 16, 619-626.	2.2	6
22	Effect of psychotropic drug treatment on sterol metabolism. Schizophrenia Research, 2017, 187, 74-81.	2.0	31
23	Probes for protein adduction in cholesterol biosynthesis disorders: Alkynyl lanosterol as a viable sterol precursor. Redox Biology, 2017, 12, 182-190.	9.0	23
24	Vulnerability of DHCR7+/â^' mutation carriers to aripiprazole and trazodone exposure. Journal of Lipid Research, 2017, 58, 2139-2146.	4.2	16
25	Inhibitors of 7-Dehydrocholesterol Reductase: Screening of a Collection of Pharmacologically Active Compounds in Neuro2a Cells. Chemical Research in Toxicology, 2016, 29, 892-900.	3.3	37
26	The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts. Journal of Medicinal Chemistry, 2016, 59, 1102-1115.	6.4	48
27	An altered peripheral IL6 response in major depressive disorder. Neurobiology of Disease, 2016, 89, 46-54.	4.4	23
28	Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors. Translational Psychiatry, 2015, 5, e523-e523.	4.8	25
29	Profiling and Imaging Ion Mobility-Mass Spectrometry Analysis of Cholesterol and 7-Dehydrocholesterol in Cells Via Sputtered Silver MALDI. Journal of the American Society for Mass Spectrometry, 2015, 26, 924-933.	2.8	43
30	Coordinated Messenger RNA/MicroRNA Changes in Fibroblasts of Patients with Major Depression. Biological Psychiatry, 2015, 77, 256-265.	1.3	57
31	Elevated autophagy and mitochondrial dysfunction in the Smith–Lemli–Opitz Syndrome. Molecular Genetics and Metabolism Reports, 2014, 1, 431-442.	1.1	17
32	Antioxidant Supplementation Ameliorates Molecular Deficits in Smith-Lemli-Opitz Syndrome. Biological Psychiatry, 2014, 75, 215-222.	1.3	44
33	Programmed to be Human?. Neuron, 2014, 81, 224-226.	8.1	6
34	Metabolic stress-induced microRNA and mRNA expression profiles of human fibroblasts. Experimental Cell Research, 2014, 320, 343-353.	2.6	30
35	A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2014, 55, 329-337.	4.2	39
36	Metabolism of oxysterols derived from nonenzymatic oxidation of 7-dehydrocholesterol in cells. Journal of Lipid Research, 2013, 54, 1135-1143.	4.2	48

#	Article	IF	CITATIONS
37	Lipid biomarkers of oxidative stress in a genetic mouse model of Smithâ€Lemliâ€Opitz syndrome. Journal of Inherited Metabolic Disease, 2013, 36, 113-122.	3.6	52
38	Behavioral and serotonergic response changes in the Dhcr7-HET mouse model of Smith–Lemli–Opitz syndrome. Pharmacology Biochemistry and Behavior, 2013, 106, 101-108.	2.9	13
39	Probing lipid-protein adduction with alkynyl surrogates: application to Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2013, 54, 2842-2850.	4.2	31
40	Oxidative stress and glutathione response in tissue cultures from persons with major depression. Journal of Psychiatric Research, 2012, 46, 1326-1332.	3.1	60
41	DHCEO accumulation is a critical mediator of pathophysiology in a Smith–Lemli–Opitz syndrome model. Neurobiology of Disease, 2012, 45, 923-929.	4.4	65
42	The autism disconnect. Nature, 2011, 474, 294-295.	27.8	6
43	Wnt Signaling as a Potential Therapeutic Target for Frontotemporal Dementia. Neuron, 2011, 71, 955-957.	8.1	14
44	An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2011, 52, 1222-1233.	4.2	92
45	p75 Neurotrophin Receptor-mediated Apoptosis in Sympathetic Neurons Involves a Biphasic Activation of JNK and Up-regulation of Tumor Necrosis Factor-α-converting Enzyme/ADAM17. Journal of Biological Chemistry, 2010, 285, 20358-20368.	3.4	112
46	Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2010, 51, 3259-3269.	4.2	114
47	Oxysterols from Free Radical Chain Oxidation of 7-Dehydrocholesterol: Product and Mechanistic Studies. Journal of the American Chemical Society, 2010, 132, 2222-2232.	13.7	120
48	Molecular consequences of altered neuronal cholesterol biosynthesis. Journal of Neuroscience Research, 2009, 87, 866-875.	2.9	37
49	NRIF is a Regulator of Neuronal Cholesterol Biosynthesis Genes. Journal of Molecular Neuroscience, 2009, 38, 152-158.	2.3	10
50	p75NTRâ€dependent modulation of cellular handling of reactive oxygen species. Journal of Neurochemistry, 2009, 110, 295-306.	3.9	22
51	Lipid rafts, cholesterol, and the brain. Neuropharmacology, 2008, 55, 1265-1273.	4.1	263
52	Protein Kinase A-Induced Phosphorylation of the p65 Subunit of Nuclear Factor-ÂB Promotes Schwann Cell Differentiation into a Myelinating Phenotype. Journal of Neuroscience, 2008, 28, 3738-3746.	3.6	76
53	Expression and p75 neurotrophin receptor dependence of cholesterol synthetic enzymes in adult mouse brain. Neurobiology of Aging, 2007, 28, 1522-1531.	3.1	41
54	DNA self-polymers as microarray probes improve assay sensitivity. Journal of Neuroscience Methods, 2006, 151, 216-223.	2.5	4

#	Article	IF	CITATIONS
55	p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2. Experimental Cell Research, 2006, 312, 3287-3297.	2.6	5
56	Bcl-2 overexpression disrupts the morphology of PC12 cells through reduced ERK activation. Brain Research, 2006, 1112, 46-55.	2.2	4
57	The intracellular domain of p75NTR as a determinant of cellular reducing potential and response to oxidant stress. Aging Cell, 2005, 4, 187-196.	6.7	28
58	Presenilin-1-Dependent Transcriptome Changes. Journal of Neuroscience, 2005, 25, 1571-1578.	3.6	42
59	Cholesterol biosynthesis and the pro-apoptotic effects of the p75 nerve growth factor receptor in PC12 pheochromocytoma cells. Molecular Brain Research, 2005, 139, 225-234.	2.3	29
60	Environmental Enrichment Reduces Aβ Levels and Amyloid Deposition in Transgenic Mice. Cell, 2005, 120, 701-713.	28.9	821
61	True and false discovery in DNA microarray experiments: Transcriptome changes in the hippocampus of presenilin 1 mutant mice. Methods, 2005, 37, 261-273.	3.8	12
62	Transcriptome Differences Between the Frontal Cortex and Hippocampus of Wild-Type and Humanized Presenilin-1 Transgenic Mice. American Journal of Geriatric Psychiatry, 2005, 13, 1041-1051.	1.2	16
63	Transcriptome Differences Between the Frontal Cortex and Hippocampus of Wild-Type and Humanized Presenilin-1 Transgenic Mice. American Journal of Geriatric Psychiatry, 2005, 13, 1041-1051.	1.2	7
64	Microarray Analysis of Lyn-Deficient B Cells Reveals Germinal Center-Associated Nuclear Protein and Other Genes Associated with the Lymphoid Germinal Center. Journal of Immunology, 2004, 172, 4133-4141.	0.8	18
65	DNA microarray profiling of developing PS1-deficient mouse brain reveals complex and coregulated expression changes. Molecular Psychiatry, 2003, 8, 863-878.	7.9	29
66	Bcl-2 mediates induction of neural differentiation. Oncogene, 2003, 22, 5515-5518.	5.9	27
67	Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain, 2002, 125, 2392-2407.	7.6	78
68	Identification of the Presenilins in Hematopoietic Cells with Localization of Presenilin 1 to Neutrophil and Platelet Granules. Blood Cells, Molecules, and Diseases, 2002, 28, 28-38.	1.4	27
69	Myotonic dystrophy: tissue-specific effect of somatic CTG expansions on allele-specific DMAHP/SIX5 expression. Human Molecular Genetics, 1999, 8, 1017-1023.	2.9	38
70	Myotonic dystrophy: Molecular windows on a complex etiology. Nucleic Acids Research, 1998, 26, 1363-1368.	14.5	59
71	Restriction in Cell Fates of Developing Spinal Cord Cells Transplanted to Neural Crest Pathways. Journal of Neuroscience, 1996, 16, 7638-7648.	3.6	32
72	Late-migrating neuroepithelial cells from the spinal cord differentiate into sensory ganglion cells and melanocytes. Neuron, 1995, 14, 143-152.	8.1	79