Bikram Pant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6554045/publications.pdf Version: 2024-02-01

RIKDAM DANT

#	Article	IF	CITATIONS
1	Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice. Plant Physiology, 2022, 189, 988-1004.	4.8	10
2	Protocol for determining protein cysteine thiol redox status using western blot analysis. STAR Protocols, 2021, 2, 100566.	1.2	4
3	Antagonistic Regulation by CPN60A and CLPC1 of TRXL1 that Regulates MDH Activity Leading to Plant Disease Resistance and Thermotolerance. Cell Reports, 2020, 33, 108512.	6.4	15
4	GENERAL CONTROL NONREPRESSIBLE4 Degrades 14-3-3 and the RIN4 Complex to Regulate Stomatal Aperture with Implications on Nonhost Disease Resistance and Drought Tolerance. Plant Cell, 2017, 29, 2233-2248.	6.6	56
5	The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. Journal of Experimental Botany, 2015, 66, 1907-1918.	4.8	146
6	Expression of Sucrose Transporter cDNAs Specifically in Companion Cells Enhances Phloem Loading and Long-Distance Transport of Sucrose but Leads to an Inhibition of Growth and the Perception of a Phosphate Limitation Â. Plant Physiology, 2014, 165, 715-731.	4.8	72
7	<i>Arabidopsis miR156</i> Regulates Tolerance to Recurring Environmental Stress through <i>SPL</i> Transcription Factors. Plant Cell, 2014, 26, 1792-1807.	6.6	511
8	Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development. Journal of Experimental Botany, 2013, 64, 4301-4312.	4.8	20
9	Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytologist, 2011, 190, 442-456.	7.3	149
10	Expression Pattern Suggests a Role of MiR399 in the Regulation of the Cellular Response to Local Pi Increase During Arbuscular Mycorrhizal Symbiosis. Molecular Plant-Microbe Interactions, 2010, 23, 915-926.	2.6	157
11	Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing Â. Plant Physiology, 2009, 150, 1541-1555.	4.8	414
12	Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Research, 2009, 37, 3083-3093.	14.5	130
13	MicroRNA399 is a longâ€distance signal for the regulation of plant phosphate homeostasis. Plant Journal, 2008, 53, 731-738.	5.7	652
14	Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell and Environment, 2007, 30, 85-112.	5.7	533
15	PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants. Plant Physiology, 2006, 141, 988-999.	4.8	1,021