
Donald G Phinney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6553129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical systems biology reveals mechanisms of glucocorticoid receptor signaling. Nature Chemical Biology, 2021, 17, 307-316.	3.9	11
2	Mesenchymal stem cellâ€derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell, 2021, 20, e13337.	3.0	63
3	ISCT special issue introduction. Cytotherapy, 2021, 23, 367.	0.3	Ο
4	Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 2021, 23, 368-372.	0.3	45
5	Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 2021, 23, 1060-1063.	0.3	15
6	Mesenchymal Stem Cell (MSC)–Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells. Neurotherapeutics, 2021, 18, 1939-1952.	2.1	24
7	Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. Npj Microgravity, 2021, 7, 49.	1.9	5
8	Dear Speakers and Abstract Presenters of ISCT 2020 Paris Virtual. Cytotherapy, 2020, 22, S4.	0.3	0
9	Introduction of new commissioning editor. Cytotherapy, 2020, 22, 601.	0.3	Ο
10	Open access versus accessibility: Evaluating Plan S. Cytotherapy, 2020, 22, 399.	0.3	0
11	ISCT Talking with Giants Trilogy. Cytotherapy, 2020, 22, 173-179.	0.3	Ο
12	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.3	94
13	Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 2020, 22, 602-605.	0.3	35
14	Forward for two review articles authored by ISCT's North American Legal & Regulatory Affairs Committee on the regulatory framework for cellular & gene therapy product approval in the U.S. and Canada. Cytotherapy, 2019, 21, 685.	0.3	0
15	Manufacturing mesenchymal stromal cells for clinical applications: A survey of Good Manufacturing Practices at U.S. academic centers. Cytotherapy, 2019, 21, 782-792.	0.3	54
16	Talking with Giants Introduction. Cytotherapy, 2019, 21, 377.	0.3	0
17	Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regenerative Medicine, 2019, 4, 22.	2.5	1,113
18	Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death and Differentiation, 2018, 25, 679-692.	5.0	38

#	Article	IF	CITATIONS
19	Mesenchymal Stem Cells: The Moniker Fits the Science. Stem Cells, 2018, 36, 7-10.	1.4	31
20	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
21	Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 2017, 35, 851-858.	1.4	1,172
22	Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit. Journal of the American Chemical Society, 2017, 139, 3446-3455.	6.6	140
23	IP6K1 Reduces Mesenchymal Stem/Stromal Cell Fitness and Potentiates High Fat Diet-Induced Skeletal Involution. Stem Cells, 2017, 35, 1973-1983.	1.4	21
24	Rapid Generation of miRNA Inhibitor Leads by Bioinformatics and Efficient High-Throughput Screening Methods. Methods in Molecular Biology, 2017, 1517, 179-198.	0.4	14
25	Mesenchymal Stem Cells Yield Transient Improvements in Motor Function in an Infant Rhesus Macaque with Severe Early-Onset Krabbe Disease. Stem Cells Translational Medicine, 2017, 6, 99-109.	1.6	7
26	Mesenchymal stromal cells and ischemic heart disease: hitting the target?. Cardiovascular Diagnosis and Therapy, 2017, 7, E4-E6.	0.7	2
27	Advancing mesenchymal stem/stromal cells-based therapies for neurologic disease. Neural Regeneration Research, 2017, 12, 60.	1.6	1
28	Quantifiable Metrics for Predicting MSC Therapeutic Efficacy. Journal of Stem Cell Research & Therapy, 2016, 6, .	0.3	14
29	A Clinical Indications Prediction Scale Based on TWIST1 for Human Mesenchymal Stem Cells. EBioMedicine, 2016, 4, 62-73.	2.7	71
30	Design of a small molecule against an oncogenic noncoding RNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5898-5903.	3.3	167
31	Isolation of Mouse Bone Marrow Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, 1416, 205-223.	0.4	33
32	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.3	400
33	Transcriptional Profiling Identifies the Signaling Axes of IGF and Transforming Growth Factor-β as Involved in the Pathogenesis of Osteosarcoma. Clinical Orthopaedics and Related Research, 2016, 474, 178-189.	0.7	22
34	MSCs: Scientific Support for Multiple Therapies. Stem Cells International, 2015, 2015, 1-2.	1.2	12
35	Pharmacological repression of PPARÎ ³ promotes osteogenesis. Nature Communications, 2015, 6, 7443.	5.8	99
36	Small Molecule Inhibition of miR-544 Biogenesis Disrupts Adaptive Responses to Hypoxia by Modulating ATM-mTOR Signaling. ACS Chemical Biology, 2015, 10, 2267-2276.	1.6	50

#	Article	IF	CITATIONS
37	Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 2015, 6, 8472.	5.8	693
38	Allo-Reactivity of Mesenchymal Stem Cells in Rhesus Macaques Is Dose and Haplotype Dependent and Limits Durable Cell Engraftment In Vivo. PLoS ONE, 2014, 9, e87238.	1.1	82
39	Mesenchymal Stem Cell Biodistribution, Migration, and Homing <i>In Vivo</i> . Stem Cells International, 2014, 2014, 1-2.	1.2	34
40	TNFR1/Phox Interaction and TNFR1 Mitochondrial Translocation Thwart Silica-Induced Pulmonary Fibrosis. Journal of Immunology, 2014, 192, 3837-3846.	0.4	31
41	Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Research, 2014, 1573, 92-107.	1.1	17
42	The peculiar biology of mouse mesenchymal stromal cells—oxygen is the key. Cytotherapy, 2013, 15, 536-541.	0.3	17
43	MSCs: science and trials. Nature Medicine, 2013, 19, 812-812.	15.2	41
44	Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy, 2013, 15, 140-145.	0.3	106
45	MSCs: Paracrine Effects. , 2013, , 145-167.		5
46	Limited Acquisition of Chromosomal Aberrations in Human Adult Mesenchymal Stromal Cells. Cell Stem Cell, 2012, 10, 9-10.	5.2	87
47	MicroRNAs in the Imprinted DLK1-DIO3 Region Repress the Epithelial-to-Mesenchymal Transition by Targeting the TWIST1 Protein Signaling Network. Journal of Biological Chemistry, 2012, 287, 42695-42707.	1.6	105
48	Therapeutic Applications of Mesenchymal Stem Cells. BioDrugs, 2012, 26, 201-208.	2.2	24
49	Atmospheric Oxygen Inhibits Growth and Differentiation of Marrowâ€Derived Mouse Mesenchymal Stem Cells via a p53â€Dependent Mechanism: Implications for Longâ€Term Culture Expansion. Stem Cells, 2012, 30, 975-987.	1.4	100
50	Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. Journal of Cellular Biochemistry, 2012, 113, 2806-2812.	1.2	344
51	Therapeutic Applications of Mesenchymal Stem Cells. BioDrugs, 2012, 26, 201-208.	2.2	11
52	Regulating in Vitro Motility of Human Mesenchymal Stem Cells with Macrophage Migration Inhibitory Factor (MIF) and a Small-Molecule MIF Antagonist. , 2012, , 149-160.		0
53	High-capacity assay to quantify the clonal heterogeneity in potency of mesenchymal stem cells. BMC Proceedings, 2011, 5, 014.	1.8	1
54	Twist, Epithelial-to-Mesenchymal Transition, and Stem Cells. Stem Cells, 2011, 29, 3-4.	1.4	18

#	Article	IF	CITATIONS
55	Fibroblast Growth Factor 2 (Fgf2) Inhibits Differentiation of Mesenchymal Stem Cells by Inducing <i>Twist2</i> and <i>Spry4</i> , Blocking Extracellular Regulated Kinase Activation, and Altering Fgf Receptor Expression Levels. Stem Cells, 2011, 29, 1102-1111.	1.4	72
56	Clonal analysis of the proliferation potential of human bone marrow mesenchymal stem cells as a function of potency. Biotechnology and Bioengineering, 2011, 108, 2716-2726.	1.7	70
57	Activation of CD74 inhibits migration of human mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 566-572.	0.7	26
58	Migratory response of mesenchymal stem cells to macrophage migration inhibitory factor and its antagonist as a function of colony-forming efficiency. Biotechnology Letters, 2010, 32, 19-27.	1.1	27
59	Cell-doseâ^'dependent increases in circulating levels of immune effector cells in rhesus macaques following intracranial injection of allogeneic MSCs. Experimental Hematology, 2010, 38, 957-967.e1.	0.2	37
60	In Vitro High-Capacity Assay to Quantify the Clonal Heterogeneity in Trilineage Potential of Mesenchymal Stem Cells Reveals a Complex Hierarchy of Lineage Commitment. Stem Cells, 2010, 28, 788-798.	1.4	376
61	Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 2010, 12, 576-578.	0.3	279
62	Small-Molecule Antagonist of Macrophage Migration Inhibitory Factor Enhances Migratory Response of Mesenchymal Stem Cells to Bronchial Epithelial Cells. Tissue Engineering - Part A, 2009, 15, 2335-2346.	1.6	22
63	A SAGE View of Mesenchymal Stem Cells. International Journal of Stem Cells, 2009, 2, 1-10.	0.8	9
64	Highâ€Capacity Assay to Evaluate Colonyâ€Forming Efficiency and Multipotency of Bone Marrow Stromal Cells. FASEB Journal, 2009, 23, LB247.	0.2	0
65	Functional Heterogeneity of MSC Populations Provides Clues to Their Broad Therapeutic Efficacy. FASEB Journal, 2009, 23, 303.1.	0.2	0
66	Reprogramming Battle: Egg Vs. Virus. Stem Cells, 2008, 26, 1-2.	1.4	7
67	Adipose Stromal/Stem Cells: Basic and Translational Advances: The IFATS Collection. Stem Cells, 2008, 26, 2664-2665.	1.4	55
68	Isolation of Mesenchymal Stem Cells from Murine Bone Marrow by Immunodepletion. , 2008, 449, 171-186.		43
69	Mesenchymal Stem Cells. , 2008, 449, v-vii.		33
70	Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11002-11007.	3.3	917
71	Biochemical Heterogeneity of Mesenchymal Stem Cell Populations: Clues to their Therapeutic Efficacy. Cell Cycle, 2007, 6, 2884-2889.	1.3	204
72	Cytoplasmic Extracts from Adipose Tissue Stromal Cells Alleviates Secondary Damage by Modulating Apoptosis and Promotes Functional Recovery Following Spinal Cord Injury. Brain Pathology, 2007, 17, 263-275.	2.1	27

#	Article	IF	CITATIONS
73	Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Experimental Hematology, 2007, 35, 640-652.	0.2	70
74	Age- and Dose-Related Effects on MSC Engraftment Levels and Anatomical Distribution in the Central Nervous Systems of Nonhuman Primates: Identification of Novel MSC Subpopulations That Respond to Guidance Cues in Brain. Stem Cells, 2007, 25, 3261-3270.	1.4	40
75	Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair—Current Views. Stem Cells, 2007, 25, 2896-2902.	1.4	1,724
76	Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Experimental Neurology, 2006, 198, 54-64.	2.0	546
77	Review:Ex VivoEngineering of Living Tissues with Adult Stem Cells. Tissue Engineering, 2006, 12, 3007-3019.	4.9	218
78	Biological Activities Encoded by the Murine Mesenchymal Stem Cell Transcriptome Provide a Basis for Their Developmental Potential and Broad Therapeutic Efficacy. Stem Cells, 2006, 24, 186-198.	1.4	91
79	Murine Mesenchymal Stem Cells Transplanted to the Central Nervous System of Neonatal Versus Adult Mice Exhibit Distinct Engraftment Kinetics and Express Receptors That Guide Neuronal Cell Migration. Stem Cells and Development, 2006, 15, 437-447.	1.1	45
80	Preclinical Evaluation of Adult Stem Cell Engraftment and Toxicity in the CNS of Rhesus Macaques. Molecular Therapy, 2006, 13, 1173-1184.	3.7	28
81	Interaction Between Murine Mesenchymal Stem Cells And Tâ€Cell Proliferation: Role Of Interleukin 1 Receptor Antagonist. FASEB Journal, 2006, 20, A532.	0.2	0
82	Review:Ex VivoEngineering of Living Tissues with Adult Stem Cells. Tissue Engineering, 2006, .	4.9	0
83	Plasticity and Therapeutic Potential of Mesenchymal Stem Cells in the Nervous System. Current Pharmaceutical Design, 2005, 11, 1255-1265.	0.9	189
84	Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochemical and Biophysical Research Communications, 2005, 338, 1759-1765.	1.0	33
85	Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. Journal of Cellular Biochemistry, 2003, 89, 1235-1249.	1.2	434
86	Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8407-8411.	3.3	1,297
87	Building a consensus regarding the nature and origin of mesenchymal stem cells. Journal of Cellular Biochemistry, 2002, 85, 7-12.	1.2	103
88	MicroSAGE Analysis of 2,353 Expressed Genes in a Single Cell-Derived Colony of Undifferentiated Human Mesenchymal Stem Cells Reveals mRNAs of Multiple Cell Lineages. Stem Cells, 2001, 19, 408-418.	1.4	245
89	Pathogenesis of HIV-1 Infection Within Bone Marrow Cells. Leukemia and Lymphoma, 2000, 37, 497-515.	0.6	26
90	Potential use of marrow stromal cells as therapeutic vectors for diseases of the central nervous system. Progress in Brain Research, 2000, 128, 293-297.	0.9	26

#	Article	IF	CITATIONS
91	Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology, 1999, 107, 275-281.	1.2	807
92	Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: Variations in yield, growth, and differentiation. Journal of Cellular Biochemistry, 1999, 72, 570-585.	1.2	495
93	Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. Journal of Cellular Biochemistry, 1999, 75, 424-436.	1.2	450
94	Enhanced In Situ Detection of β-Glucuronidase Activity in Murine Tissue. Journal of Histochemistry and Cytochemistry, 1999, 47, 965-968.	1.3	4
95	Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: Variations in yield, growth, and differentiation. Journal of Cellular Biochemistry, 1999, 72, 570-585.	1.2	9
96	A 1,064 bp fragment from the promoter region of the Col11a2 gene drives lacz expression not only in cartilage but also in osteoblasts adjacent to regions undergoing both endochondral and intramembranous ossification in mouse embryos. Matrix Biology, 1998, 17, 213-221.	1.5	11
97	Analysis of the Hormone-dependent Regulation of a JunD-Estrogen Receptor Chimera. Journal of Biological Chemistry, 1995, 270, 11502-11513.	1.6	14
98	Complex Genetic Organization of junB: Multiple Blocks of Flanking Evolutionarily Conserved Sequence at the Murine and Human junB Loci. Genomics, 1995, 28, 228-234.	1.3	8
99	Regulation of expression by divalent cations of a light-inducible gene in Arthrobacter photogonimos. Archives of Microbiology, 1992, 158, 85-92.	1.0	5
100	Induction of a light-inducible gene in Arthrobacter sp. by exposure of cells to chelating agents and pH 5. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 950, 234-237.	2.4	4
101	Are â€ [~] light-derepressible' genes controlled by metal-protein complexes?. Trends in Biochemical Sciences, 1988, 13, 371-374.	3.7	6
102	Synthesis and antitumor activities of unsymmetrically substituted 1,4-bis[(aminoalkyl)amino]anthracene-9,10-diones and related systems. Journal of Medicinal Chemistry, 1986, 29, 1370-1373.	2.9	19
103	Synthesis of unsymmetrical 1,4-bis[(aminoalkyl)amino]anthracene-9,10-diones for antineoplastic evaluation. Journal of Organic Chemistry, 1984, 49, 5253-5255.	1.7	10