Niclas S Mueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6553097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the local dielectric function of WS2 on an Au substrate by near field optical microscopy operating in the visible spectral range. Applied Surface Science, 2022, 574, 151672.	6.1	6
2	Carbon Nanotubes for the Optical Far-Field Readout of Processes That Are Mediated by Plasmonic Near-Fields. Journal of Physical Chemistry C, 2022, 126, 5927-5934.	3.1	0
3	Vibrational Stark Effects: Ionic Influence on Local Fields. Journal of Physical Chemistry Letters, 2022, 13, 4905-4911.	4.6	11
4	Experimental tests of surfaceâ€enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory. Journal of Raman Spectroscopy, 2021, 52, 310-322.	2.5	18
5	Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals. ACS Nano, 2021, 15, 5523-5533.	14.6	58
6	Strong light-matter coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2021, 103, .</mml:mn></mml:msub></mml:math 	m a. 2 <td>l:mosub></td>	l:mosub>
7	Kinetics and Mechanism of Plasmon-Driven Dehalogenation Reaction of Brominated Purine Nucleobases on Ag and Au. ACS Catalysis, 2021, 11, 8370-8381.	11.2	21
8	Plasmon polaritons in nanoparticle supercrystals: Microscopic quantum theory beyond the dipole approximation. Physical Review B, 2021, 104, .	3.2	7
9	Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature, 2020, 583, 780-784.	27.8	144
10	Structural order in plasmonic superlattices. Nature Communications, 2020, 11, 3821.	12.8	56
11	Selection Rules for Structured Light in Nanooligomers and Other Nanosystems. ACS Photonics, 2020, 7, 1537-1550.	6.6	22
12	Experimental Evidence for Nonthermal Contributions to Plasmon-Enhanced Electrochemical Oxidation Reactions. ACS Catalysis, 2020, 10, 2345-2353.	11.2	35
13	Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles. Journal of Chemical Physics, 2020, 152, 064710.	3.0	9
14	Selective excitation of localized surface plasmons by structured light. Optics Express, 2020, 28, 24262.	3.4	11
15	Modeling Surface-Enhanced Spectroscopy With Perturbation Theory. Frontiers in Chemistry, 2019, 7, 470.	3.6	8
16	Plasmonic Properties of Close-Packed Metallic Nanoparticle Mono- and Bilayers. Journal of Physical Chemistry C, 2019, 123, 17951-17960.	3.1	17
17	Direct optical excitation of dark plasmons for hot electron generation. Faraday Discussions, 2019, 214, 159-173.	3.2	15
18	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	3.2	5

NICLAS S MUELLER

#	Article	IF	CITATIONS
19	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
20	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	3.2	21
21	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
22	Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 10578-10585.	3.1	6
23	Graphene as a local probe to investigate near-field properties of plasmonic nanostructures. Physical Review B, 2018, 97, .	3.2	12
24	Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials, 2018, 5, 015016.	4.4	95
25	Excitation-Tunable Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 28273-28279.	3.1	9
26	Dark Interlayer Plasmons in Colloidal Gold Nanoparticle Bi- and Few-Layers. ACS Photonics, 2018, 5, 3962-3969.	6.6	28
27	Combined Tip-Enhanced Raman Spectroscopy and Scattering-Type Scanning Near-Field Optical Microscopy. Journal of Physical Chemistry C, 2018, 122, 16274-16280.	3.1	13
28	Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots. Nano Letters, 2017, 17, 2667-2673.	9.1	49
29	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	3.2	11
30	Plasmonic enhancement of SERS measured on molecules in carbon nanotubes. Faraday Discussions, 2017, 205, 85-103.	3.2	13
31	Symmetry-derived selection rules for plasmon-enhanced Raman scattering. Physical Review B, 2017, 95, .	3.2	33
32	Surface-enhanced Raman scattering as a higher-order Raman process. Physical Review A, 2016, 94, .	2.5	27
33	Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition. Carbon, 2014, 78, 347-355.	10.3	41