Mark F Jentsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6552939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A transferable energy model for determining the future energy demand and its uncertainty in a country's residential sector. Building Research and Information, 2020, 48, 587-612.	2.0	7
2	Field study of the building physics properties of common building types in the Inner Himalayan valleys of Bhutan. Energy for Sustainable Development, 2017, 38, 48-66.	2.0	9
3	Transforming typical hourly simulation weather data files to represent urban locations by using a 3D urban unit representation with micro-climate simulations. Future Cities and Environment, 2017, 2, 7.	0.6	6
4	Comparison of prediction models for determining energy demand in the residential sector of a country. Energy and Buildings, 2016, 128, 38-55.	3.1	28
5	Generating near-extreme Summer Reference Years for building performance simulation. Building Services Engineering Research and Technology, 2015, 36, 701-727.	0.9	29
6	Investigating the principal adaptive comfort relationships for young children. Building Research and Information, 2015, 43, 371-382.	2.0	18
7	Limitations of the CIBSE design summer year approach for delivering representative near-extreme summer weather conditions. Building Services Engineering Research and Technology, 2014, 35, 155-169.	0.9	24
8	The role of a building's thermal properties on pupils' thermal comfort in junior school classrooms as determined in field studies. Building and Environment, 2014, 82, 640-654.	3.0	56
9	Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 2013, 55, 514-524.	4.3	220
10	Thermal comfort in naturally ventilated primary school classrooms. Building Research and Information, 2013, 41, 301-316.	2.0	74
11	Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, 2012, 53, 166-182.	3.1	189
12	Evaluation of domestic Energy Performance Certificates in use. Building Services Engineering Research and Technology, 2011, 32, 361-376.	0.9	40
13	Overheating Risk Evaluation of School Classrooms. , 2011, , .		3
14	Vertical axis resistance type wind turbines for use in buildings. Renewable Energy, 2009, 34, 1407-1412.	4.3	113
15	Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy and Buildings, 2008, 40, 2148-2168.	3.1	257
16	Potential of emerging glazing technologies for highly glazed buildings in hot arid climates. Energy and Buildings, 2008, 40, 720-731.	3.1	121