
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6552641/publications.pdf Version: 2024-02-01

INF W/ DADK

#	Article	IF	CITATIONS
1	Functional Protein Additives in Surimi Gels. Journal of Food Science, 1994, 59, 525-527.	1.5	257
2	FISH SAUCE PRODUCTS AND MANUFACTURING: A REVIEW. Food Reviews International, 2001, 17, 65-88.	4.3	193
3	USING CAPACITIVE (RADIO FREQUENCY) DIELECTRIC HEATING IN FOOD PROCESSING AND PRESERVATION ? A REVIEW. Journal of Food Process Engineering, 2000, 23, 25-55.	1.5	154
4	Surimi Gel Colors as Affected by Moisture Content and Physical Conditions. Journal of Food Science, 1995, 60, 15-18.	1.5	113
5	FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions. Food Chemistry, 2017, 226, 156-164.	4.2	107
6	Scanning Calorimetric Behavior of Tilapia Myosin and Actin due to Processing of Muscle and Protein Purification. Journal of Food Science, 1989, 54, 49-51.	1.5	89
7	Solubility of Salmon Myosin as Affected by Conformational Changes at Various Ionic Strengths and pH. Journal of Food Science, 1998, 63, 215-218.	1.5	89
8	Cryoprotective Effects of Sugar, Polyols, and/or Phosphates on Alaska Pollack Surimi. Journal of Food Science, 1988, 53, 1-3.	1.5	85
9	Extraction of Proteins from Pacific Whiting Mince at Various Washing Conditions. Journal of Food Science, 1996, 61, 432-438.	1.5	81
10	CHARACTERISTICS OF SARCOPLASMIC PROTEINS AND THEIR INTERACTION WITH MYOFIBRILLAR PROTEINS. Journal of Food Biochemistry, 2005, 29, 517-532.	1.2	78
11	Calcium Compounds to Improve Gel Functionality of Pacific Whiting and Alaska Pollock Surimi. Journal of Food Science, 1998, 63, 969-974.	1.5	77
12	Recovered Protein and Reconditioned Water from Surimi Processing Waste. Journal of Food Science, 1995, 60, 4-9.	1.5	76
13	Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi. Food Chemistry, 2014, 150, 463-468.	4.2	72
14	Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs. Food Chemistry, 2010, 121, 1046-1052.	4.2	63
15	Combined Effects of Phosphates and Sugar or Polyol on Protein Stabilization of Fish Myofibrils. Journal of Food Science, 1987, 52, 1509-1513.	1.5	59
16	Rheological Behavior and Potential Cross-Linking of Pacific Whiting (Merluccius productus) Surimi Gel. Journal of Food Science, 1994, 59, 773-776.	1,5	55
17	Structural Changes and Dynamic Rheological Properties of Sarcoplasmic Proteins Subjected to pH-Shift Method. Journal of Agricultural and Food Chemistry, 2010, 58, 4241-4249.	2.4	51
18	Linear Heating Rate Affects Gelation of Alaska Pollock and Pacific Whiting Surimi. Journal of Food Science, 1996, 61, 149-153.	1.5	48

#	Article	IF	CITATIONS
19	Enzymatic Hydrolysis of Recovered Protein from Frozen Small Croaker and Functional Properties of Its Hydrolysates. Journal of Food Science, 2009, 74, C17-24.	1.5	46
20	Physicochemical properties of nano fish bone prepared by wet mediaÂmilling. LWT - Food Science and Technology, 2015, 64, 367-373.	2.5	46
21	Raman Spectroscopy Determines Structural Changes Associated with Gelation Properties of Fish Proteins Recovered at Alkaline pH. Journal of Agricultural and Food Chemistry, 2006, 54, 2178-2187.	2.4	45
22	Linear Programming in Blending Various Components of Surimi Seafood. Journal of Food Science, 1997, 62, 561-564.	1.5	44
23	Seasonal effects on the physicochemical characteristics of fish sauce made from capelin (Mallotus) Tj ETQq1 1	0.784314 ı 4.2	rgBT_{Overloc
24	EFFECT OF NaCl ON GELATION CHARACTERISTICS OF ACID- AND ALKALI-TREATED PACIFIC WHITING FISH PROTEIN ISOLATES. Journal of Food Biochemistry, 2007, 31, 427-455.	1.2	42
25	Gelation characteristics of tropical surimi under water bath and ohmic heating. LWT - Food Science and Technology, 2012, 46, 97-103.	2.5	40
26	New developments in manufacturing of Surimi and Surimi seafood. Food Reviews International, 1997, 13, 577-610.	4.3	39
27	Effective Washing Conditions Reduce Water Usage for Surimi Processing. Journal of Aquatic Food Product Technology, 1997, 6, 65-79.	0.6	37
28	ROLE OF pH IN SOLUBILITY AND CONFORMATIONAL CHANGES OF PACIFIC WHITING MUSCLE PROTEINS. Journal of Food Biochemistry, 2004, 28, 135-154.	1.2	37
29	Partially Purified Collagen from Refiner Discharge of Pacific Whiting Surimi Processing. Journal of Food Science, 2005, 70, c511.	1.5	36
30	Frozen Stability of Fish Protein Isolate Under Various Storage Conditions. Journal of Food Science, 2006, 71, C227-C232.	1.5	35
31	Biochemical and physical characterizations of fish protein isolate and surimi prepared from fresh and frozen whole fish. LWT - Food Science and Technology, 2017, 77, 200-207.	2.5	35
32	<scp>A</scp> laska <scp>P</scp> ollock Fish Protein Gels as Affected by Refined Carrageenan and Various Salts. Journal of Food Quality, 2013, 36, 51-58.	1.4	34
33	Biochemical characterisation of Alaska pollock, Pacific whiting, and threadfin bream surimi as affected by comminution conditions. Food Chemistry, 2013, 138, 200-207.	4.2	34
34	Gelling properties of surimi as affected by the particle size of fish bone. LWT - Food Science and Technology, 2014, 58, 412-416.	2.5	34
35	Effect of salmon plasma protein on Pacific whiting surimi gelation under various ohmic heating conditions. LWT - Food Science and Technology, 2015, 61, 309-315.	2.5	33
36	Optimum Chopping Conditions for Alaska Pollock, Pacific Whiting, and Threadfin Bream Surimi Paste and Gel based on Rheological and Raman Spectroscopic Analysis. Journal of Food Science, 2012, 77, E88-97.	1.5	32

JAE W PARK

#	Article	IF	CITATIONS
37	Protein Solubility in Pacific Whiting Affected by Proteolysis During Storage. Journal of Food Science, 1996, 61, 536-539.	1.5	31
38	EXTENDING THE SHELF LIFE OF SET FISH BALL. Journal of Food Quality, 2007, 30, 1-27.	1.4	31
39	Effects of Rigor Mortis on Gel-forming Properties of Surimi and Unwashed Mince Prepared from Tilapia. Journal of Food Science, 1990, 55, 353-355.	1.5	30
40	Effect of Various Types of Egg White on Characteristics and Gelation of Fish Myofibrillar Proteins. Journal of Food Science, 2009, 74, C683-92.	1.5	28
41	Effect of rice bran hydrolysates on physicochemical and antioxidative characteristics of fried fish cakes during repeated freeze-thaw cycles. Food Bioscience, 2019, 32, 100471.	2.0	28
42	ROLE OF IONIC STRENGTH IN BIOCHEMICAL PROPERTIES OF SOLUBLE FISH PROTEINS ISOLATED FROM CRYOPROTECTED PACIFIC WHITING MINCE. Journal of Food Biochemistry, 2005, 29, 132-151.	1.2	27
43	Evaluation of Lipid Oxidation, Volatile Compounds and Vibrational Spectroscopy of Silver Carp (Hypophthalmichthys molitrix) during Ice Storage as Related to the Quality of Its Washed Mince. Foods, 2021, 10, 495.	1.9	26
44	Thermophysical Characterization of Tilapia Myosin and Its Subfragments. Journal of Food Science, 2011, 76, C1050-5.	1.5	25
45	Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates. Food Chemistry, 2015, 180, 42-47.	4.2	24
46	Assessing the textural properties of Pacific whiting and Alaska pollock surimi gels prepared with carrot under various heating rates. Food Bioscience, 2017, 20, 12-18.	2.0	23
47	Salmon blood plasma: Effective inhibitor of protease-laden Pacific whiting surimi and salmon mince. Food Chemistry, 2015, 176, 448-454.	4.2	22
48	Cryoprotection of Muscle Proteins by Carbohydrates and Polyalcohols Journal of Aquatic Food Product Technology, 1995, 3, 23-41.	0.6	21
49	Pacific whiting frozen fillets as affected by postharvest processing and storage conditions. Food Chemistry, 2016, 201, 177-184.	4.2	21
50	Extraction of Sardine Myoglobin and Its Effect on Gelation Properties of Pacific Whiting Surimi. Journal of Food Science, 2007, 72, C202-C207.	1.5	20
51	Gelation properties of tilapia fish protein isolate and surimi pre- and post-rigor. Food Bioscience, 2017, 17, 17-23.	2.0	20
52	Effects of Micron Fish Bone with Different Particle Size on the Properties of Silver Carp(Hypophthalmichthys molitrix)Surimi Gels. Journal of Food Quality, 2017, 2017, 1-8.	1.4	20
53	Biochemical and Conformational Changes of Myosin Purified from Pacific Sardine at Various pHs. Journal of Food Science, 2008, 73, C191-7.	1.5	19
54	Optimum processing conditions for slowly heated surimi seafood using protease-laden Pacific whiting surimi. LWT - Food Science and Technology, 2015, 63, 490-496.	2.5	19

#	Article	IF	CITATIONS
55	Thermal gelation of Pacific whiting surimi in microwave assisted pasteurization. Journal of Food Engineering, 2019, 258, 18-26.	2.7	19
56	EFFECTS OF SALT AND SUCROSE ADDITION ON THERMAL DENATURATION AND AGGREGATION OF WATER-LEACHED FISH MUSCLE. Journal of Food Biochemistry, 1990, 14, 395-404.	1.2	18
57	Surimi-Starch Interactions Based on Mixture Design and Regression Models. Journal of Food Science, 1997, 62, 555-560.	1.5	18
58	Evaluating Viscosity of Surimi Paste at Different Moisture Contents. Applied Rheology, 2004, 14, 133-139.	3.5	16
59	PHYSICAL PROPERTIES OF FISH PROTEINS COOKED WITH STARCHES OR PROTEIN ADDITIVES UNDER OHMIC HEATING. Journal of Food Quality, 2007, 30, 783-796.	1.4	15
60	Rheological and Biochemical Characterization of Salmon Myosin as Affected by Constant Heating Rate. Journal of Food Science, 2011, 76, C343-9.	1.5	15
61	Physicochemical properties of frozen Alaska pollock fillets and surimi as affected by various sodium phosphates. Journal of Food Processing and Preservation, 2018, 42, e13530.	0.9	14
62	Fat blocking roles of fish proteins in fried fish cake. LWT - Food Science and Technology, 2018, 97, 462-468.	2.5	14
63	Controlling Lipid Oxidation and Volatile Compounds in Frozen Fried Fish Cake Prepared with Rice Bran Hydrolysate. Journal of Aquatic Food Product Technology, 2018, 27, 885-899.	0.6	14
64	Texture of surimi-canned corn mixed gels with conventional water bath cooking and ohmic heating. Food Bioscience, 2020, 35, 100580.	2.0	13
65	Calorimetric Changes During Development of Rigor Mortis. Journal of Food Science, 1988, 53, 1312-1314.	1.5	12
66	Functional Properties and Shelf Life of Fresh Surimi from Pacific Whiting. Journal of Food Science, 1995, 60, 1241-1244.	1.5	12
67	Quantification of Alaska pollock surimi in prepared crabstick by competitive ELISA using a myosin light chain 1 specific peptide. Food Chemistry, 2010, 123, 196-201.	4.2	12
68	Manufacture of Surimi. , 2013, , 55-100.		12
69	Characterization of surimi slurries and their films derived from myofibrillar proteins with different extraction methods. Food Bioscience, 2016, 15, 118-125.	2.0	12
70	Combined effect of pH and heating conditions on the physical properties of Alaska pollock surimi gels. Journal of Texture Studies, 2017, 48, 215-220.	1.1	11
71	Image and chemical analyses of freezing-induced aggregates of fish natural actomyosin as affected by various phosphate compounds. Food Bioscience, 2017, 19, 57-64.	2.0	10
72	Effect of pre-freezing treatments on the quality of Alaska pollock fillets subjected to freezing/thawing. Food Bioscience, 2016, 16, 50-55.	2.0	9

#	Article	IF	CITATIONS
73	Recovered Meat from Pacific Whiting Frame. Journal of Aquatic Food Product Technology, 2002, 11, 5-18.	0.6	7
74	ANALYSIS OF STRESS-STRAIN BEHAVIOR OF ALASKA POLLOCK SURIMI PASTE AT CONSTANT MOISTURE CONTENT. Journal of Texture Studies, 2011, 42, 430-434.	1.1	7
75	Optimal blending of differently refined fish proteins based on their functional properties. Journal of Food Processing and Preservation, 2018, 42, e13346.	0.9	7
76	Degradation Kinetics of Myosin Heavy Chain of Pacific Whiting Surimi. Journal of Food Science, 1997, 62, 724-728.	1.5	6
77	A Model of Heat Transfer Coefficients over Steam-Cooked Surimi Paste. Journal of Aquatic Food Product Technology, 1999, 8, 39-53.	0.6	6
78	Coloring Technology for Surimi Seafood. ACS Symposium Series, 2008, , 254-266.	0.5	6
79	Elucidating Comminution Steps to Enhance the Value of Surimi from Tropical Fish. Journal of Aquatic Food Product Technology, 2015, 24, 698-711.	0.6	6
80	Impact of acidity regulator and excipient nutrients on digestive solubility and intestinal transport of calcium from calcium phosphate and carbonate. Food and Function, 2020, 11, 10655-10664.	2.1	6
81	Textural Properties of Heat-induced Gels Prepared Using Different Grades of Alaska Pollock Surimi under Ohmic Heating. Food Science and Technology Research, 2020, 26, 205-214.	0.3	6
82	Rice flour — A functional ingredient for premium crabstick. Food Science and Biotechnology, 2011, 20, 1639-1647.	1.2	5
83	Semiâ€empirical Relationship between Rupture Properties of Surimi Pastes and Failure Shear Stress of Surimi Gels at Different Moisture Contents. Journal of Texture Studies, 2013, 44, 247-252.	1.1	5
84	Physicochemical characterizations of tilapia fish protein isolate under two distinctively different comminution conditions. Journal of Food Processing and Preservation, 2017, 41, e13233.	0.9	5
85	Vibrational spectroscopy and biochemical changes in silver carp as related to quality of washed mince. Journal of the Science of Food and Agriculture, 2019, 99, 6462-6473.	1.7	5
86	Biochemical and gelling properties of silver carp surimi as affected by harvesting season and chopping time. Journal of Food Processing and Preservation, 2019, 43, e14247.	0.9	5
87	Effect of modified washing process on water usage, composition and gelling properties of grass carp surimi. Journal of the Science of Food and Agriculture, 2022, 102, 7136-7143.	1.7	5
88	Roles of TMAOase in muscle and drips of Alaska pollock fillets at various freeze/thaw cycles. Journal of Food Processing and Preservation, 2018, 42, e13427.	0.9	4
89	Improved Torsion Test Using Molded Surimi Gels. Journal of Aquatic Food Product Technology, 2001, 10, 75-84.	0.6	3
90	Controlling the Bleeding of Carmine Colorant in Crabstick. Journal of Food Science, 2009, 74, C707-12.	1.5	3

#	Article	IF	CITATIONS
91	Rice Bran Hydrolysates Minimize Freeze-Denaturation of Washed Fish Mince during Extended Freeze-Thaw Cycles. Journal of Aquatic Food Product Technology, 2021, 30, 944-953.	0.6	3
92	CHEMICAL AND FUNCTIONAL PROPERTIES OF VARIOUS BLENDS OF PHOSPHATES. Journal of Food Quality, 2009, 32, 504-521.	1.4	2
93	Estimating the quantity of egg white and whey protein concentrate in prepared crabstick using ELISA. Food Chemistry, 2010, 118, 575-581.	4.2	2
94	Assessing the Dynamic Rheology at Various Frequencies of Surimi Paste as Affected by Heating Rates and Moisture Contents. Journal of Texture Studies, 2015, 46, 302-311.	1.1	2
95	Developing an Accurate Heat Transfer Simulation Model of Alaska Pollock Surimi Paste by Estimating the Thermal Diffusivities at Various Moisture and Salt Contents. International Journal of Food Engineering, 2019, .	0.7	2
96	TEXTURE DEGRADATION KINETICS OF GELS MADE FROM PACIFIC WHITING SURIMI. Journal of Food Process Engineering, 1997, 20, 433-452.	1.5	1
97	Biochemical Properties of Pelagic Fish Proteins as Affected by Isolation Methods and Gel Properties by Heating Methods. Journal of Aquatic Food Product Technology, 2012, 21, 307-320.	0.6	1
98	Optimal Conditions to Remove Chemical Hazards in Fish Protein Isolates from Tilapia Frame Using Response Surface Methodology. Journal of Aquatic Food Product Technology, 2015, 24, 672-685.	0.6	1
99	Developing a Linearization Method to Determine Optimum Blending for Surimi with Varied Moisture Contents Using Linear Programming. International Journal of Food Engineering, 2019, .	0.7	1
100	CAPILLARY EXTRUSION VISCOMETER FOR THE VISCOSITY MEASUREMENT OF FISH PROTEIN PASTE. Journal of Food Quality, 2008, 31, 536-548.	1.4	0
101	Functional and Chemical Properties of Gim (<i>Porphyra yezoensis</i>) as Affected by the Product Form. Journal of Aquatic Food Product Technology, 2022, 31, 418-429.	0.6	0