
Roberto Guzman de Villoria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology, 2010, 70, 20-28.	3.8	354
2	Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Materialia, 2007, 55, 3025-3031.	3.8	262
3	Fabrication and Characterization of Ultrahighâ€Volume―Fraction Aligned Carbon Nanotube–Polymer Composites. Advanced Materials, 2008, 20, 2707-2714.	11.1	245
4	Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticle Research, 2009, 11, 231-249.	0.8	207
5	Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Composites Science and Technology, 2009, 69, 2649-2656.	3.8	181
6	High Electromechanical Response of Ionic Polymer Actuators with Controlledâ€Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes. Advanced Functional Materials, 2010, 20, 3266-3271.	7.8	130
7	Antimicrobial metal–organic frameworks incorporated into electrospun fibers. Chemical Engineering Journal, 2015, 262, 189-197.	6.6	129
8	Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy, 2018, 50, 401-409.	8.2	126
9	Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Composites Science and Technology, 2012, 72, 2009-2015.	3.8	125
10	Limiting Mechanisms of Mode I Interlaminar Toughening of Composites Reinforced with Aligned Carbon Nanotubes. Journal of Composite Materials, 2009, 43, 825-841.	1.2	112
11	3D mesomechanical analysis of three-axial braided composite materials. Composites Science and Technology, 2006, 66, 2954-2964.	3.8	87
12	Mechanical properties of SWNT/epoxy composites using two different curing cycles. Composites Part B: Engineering, 2006, 37, 273-277.	5.9	81
13	Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: An approach to virtual materials design. Composites Part A: Applied Science and Manufacturing, 2016, 91, 484-492.	3.8	77
14	Continuous High-Yield Production of Vertically Aligned Carbon Nanotubes on 2D and 3D Substrates. ACS Nano, 2011, 5, 4850-4857.	7.3	76
15	In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement. Composites Science and Technology, 2016, 133, 33-39.	3.8	68
16	Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites. Nanoscale, 2013, 5, 4847.	2.8	67
17	Low thermal and high electrical conductivity in hollow glass microspheres covered with carbon nanofiber–polymer composites. Composites Science and Technology, 2017, 151, 211-218.	3.8	51
18	Influence of the temperature on the properties of the soot formed from C2H2 pyrolysis. Chemical Engineering Journal, 2007, 127, 1-9.	6.6	46

#	Article	IF	CITATIONS
19	Mechanical Characterization of Carbon Nanotube Composite Materials. Mechanics of Advanced Materials and Structures, 2005, 12, 13-19.	1.5	44
20	High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate. Nanotechnology, 2009, 20, 405611.	1.3	42
21	Multi-physics damage sensing in nano-engineered structural composites. Nanotechnology, 2011, 22, 185502.	1.3	42
22	Influence of Different Operation Conditions on Soot Formation from C2H2 Pyrolysis. Industrial & Engineering Chemistry Research, 2007, 46, 7550-7560.	1.8	40
23	Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology, 2012, 72, 1416-1422.	3.8	36
24	Simultaneous synthesis of vertically aligned carbon nanotubes and amorphous carbon thin films on stainless steel. Carbon, 2015, 82, 31-38.	5.4	34
25	Non-Isothermal Crystallization Behavior of PEEK/Graphene Nanoplatelets Composites from Melt and Glass States. Polymers, 2019, 11, 124.	2.0	33
26	Nanocomposite Flexible Pressure Sensor for Biomedical Applications. Procedia Engineering, 2011, 25, 140-143.	1.2	32
27	Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids. Sensors and Actuators A: Physical, 2012, 181, 70-76.	2.0	31
28	Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures. Journal of Applied Physics, 2013, 114, .	1.1	29
29	How do graphite nanoplates affect the fracture toughness of polypropylene composites?. Composites Science and Technology, 2015, 111, 9-16.	3.8	27
30	Nanoindentation mapping of multiscale composites of graphene-reinforced polypropylene and carbon fibres. Composites Science and Technology, 2019, 169, 151-157.	3.8	22
31	Wear Behavior of Copper–Graphite Composites Processed by Field-Assisted Hot Pressing. Journal of Composites Science, 2019, 3, 29.	1.4	19
32	Numerical Analysis of Three-Dimensional Braided Composite by Means of Geometrical Modeling Based on Machine Emulation. Mechanics of Advanced Materials and Structures, 2012, 19, 207-215.	1.5	16
33	Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos. PLoS ONE, 2017, 12, e0173978.	1.1	16
34	Flexible Pressure Sensors: Modeling and Experimental Characterization. Procedia Engineering, 2012, 47, 1177-1180.	1.2	14
35	Graphene Oxide and Reduced Derivatives, as Powder or Film Scaffolds, Differentially Promote Dopaminergic Neuron Differentiation and Survival. Frontiers in Neuroscience, 2020, 14, 570409.	1.4	14
36	Triboelectric nanogenerator as self-powered impact sensor. MATEC Web of Conferences, 2018, 148, 14005.	0.1	12

#	Article	IF	CITATIONS
37	Production of graphene nanoplate/polyetheretherketone composites by semi-industrial melt-compounding. Heliyon, 2020, 6, e03740.	1.4	12
38	Controlled synthesis of nanocrystalline glass-like carbon thin films with tuneable electrical and optical properties. Chemical Engineering Journal, 2016, 299, 8-14.	6.6	11
39	Interlaminar and translaminar fracture toughness of Automated Manufactured Bio-inspired CFRP laminates. Composites Science and Technology, 2022, 219, 109236.	3.8	11
40	Microbial colonisation of transparent glass-like carbon films triggered by a reversible radiation-induced hydrophobic to hydrophilic transition. RSC Advances, 2016, 6, 50278-50287.	1.7	8
41	The effect of a semiâ€industrial masterbatch process on the carbon nanotube agglomerates and its influence in the properties of thermoplastic carbon nanotube composites. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 189-197.	2.4	8
42	Crust removal and effective modulus of aligned multi-walled carbon nanotube films. , 2012, , .		7
43	Enhanced Impact Energy Absorption Characteristics of Sandwich Composites through Tufting. Mechanics of Advanced Materials and Structures, 2015, 22, 1016-1023.	1.5	7
44	Tomographic Electrical Resistance-based Damage Sensing in Nano-Engineered Composite Structures. , 2010, , .		6
45	Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications. , 2012, , .		6
46	Aligned Carbon Nanotube Reinforcement of Advanced Composite Ply Interfaces. , 2008, , .		5
47	Methods for Growing Carbon Nanotubes on Carbon Fibers that Preserve Fiber Tensile Strength. , 2010, , .		5
48	Interlaminar Fracture Toughness of a Woven Advanced Composite Reinforced with Aligned Carbon Nanotubes. , 2009, , .		4
49	Thermal and Electrical Transport in Hybrid Woven Composites Reinforced with Aligned Carbon Nantoubes. , 2010, , .		4
50	Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films. Journal of Micromechanics and Microengineering, 2015, 25, 115023.	1.5	4
51	Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays. Nanoscale, 2021, 13, 261-271.	2.8	4
52	Fabrication and Multifunctional Properties of High Volume Fraction Aligned Carbon Nanotube Polymeric Composites. , 2008, , .		3
53	Processing and Characterization of Infusion-Processed Hybrid Composites with In Situ Grown Aligned Carbon Nanotubes. , 2009, , .		3
54	Mechanical Properties of Infusion-Processed Fiber Reinforced Plastics with In Situ-Grown Aligned Carbon Nanotubes. , 2010, , .		3

#	ARTICLE	IF	CITATIONS
55	Flexible sensor for blood pressure measurement. , 2011, 2011, 512-5.		3
56	Effect of Manufacturing Route on Mode I Fracture Toughness of Aligned Carbon Nanotube Reinforced Composites. , 2012, , .		3
57	Elastic Properties of Aligned Carbon Nanotube Polymer Nanocomposites with Controlled Morphology. , 2012, , .		3
58	Effective Stiffness of Wavy Aligned Carbon Nanotubes for Modeling of Controlled-Morphology Polymer Nanocomposites. , 2012, , .		3
59	Three-Dimensional Constitutive Relations of Aligned Carbon Nanotube Polymer Nanocomposites. , 2013, , .		3
60	Descripción de paso superior vehicular de la AutovÃa del Cantábrico realizado con materiales compuestos. Materiales De Construccion, 2006, 56, .	0.2	3
61	Conductive filler morphology effect on performance of ionic polymer conductive network composite actuators. Proceedings of SPIE, 2010, , .	0.8	1
62	New architecture and processes for hierarchical composites of aligned carbon nanotubes and continuous carbon fibers. , 2014, , .		1
63	Study of Early Stages in the Growth of Boronâ€Doped Diamond on Carbon Fibers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000284.	0.8	1
64	Enhanced Thermographic Damage Detection Enabled by Multifunctional Nanoengineered Composite Laminates. , 2011, , .		0
65	Ionic Electroactive Polymer Actuators with Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes. Materials Research Society Symposia Proceedings, 2011, 1304, 1.	0.1	0
66	Enhanced Electromechanical Responses of IPCNC Actuators. , 2010, , .		0