
Geng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6551846/publications.pdf Version: 2024-02-01

GENC YANG

#	Article	IF	CITATIONS
1	Full Parameter Estimation for Permanent Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics, 2022, 69, 4376-4386.	7.9	41
2	Emerging wearable flexible sensors for sweat analysis. Bio-Design and Manufacturing, 2022, 5, 64-84.	7.7	29
3	GuLiM: A Hybrid Motion Mapping Technique for Teleoperation of Medical Assistive Robot in Combating the COVID-19 Pandemic. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 106-117.	3.2	16
4	Human Digital Twin (HDT) Driven Human-Cyber-Physical Systems: Key Technologies and Applications. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	3.7	40
5	Soft Robot Skin With Conformal Adaptability for On-Body Tactile Perception of Collaborative Robots. IEEE Robotics and Automation Letters, 2022, 7, 5127-5134.	5.1	20
6	Bioinspired Coâ€Đesign of Tactile Sensor and Deep Learning Algorithm for Human–Robot Interaction. Advanced Intelligent Systems, 2022, 4, .	6.1	14
7	Bioinspired Coâ€Đesign of Tactile Sensor and Deep Learning Algorithm for Human–Robot Interaction. Advanced Intelligent Systems, 2022, 4, .	6.1	9
8	CoboSkin: Soft Robot Skin With Variable Stiffness for Safer Human–Robot Collaboration. IEEE Transactions on Industrial Electronics, 2021, 68, 3303-3314.	7.9	58
9	Fluidâ€Ðriven Soft CoboSkin for Safer Human–Robot Collaboration: Fabrication and Adaptation. Advanced Intelligent Systems, 2021, 3, 2000038.	6.1	10
10	An Improved Hybrid Field Model for Calculating On-Load Performance of Interior Permanent-Magnet Motors. IEEE Transactions on Industrial Electronics, 2021, 68, 9207-9217.	7.9	19
11	The effect of multiple interventions to balance healthcare demand for controlling COVID-19 outbreaks: a modelling study. Scientific Reports, 2021, 11, 3110.	3.3	11
12	Review of Robot Skin: A Potential Enabler for Safe Collaboration, Immersive Teleoperation, and Affective Interaction of Future Collaborative Robots. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 681-700.	3.2	29
13	A Fully Printed Flexible Sensor Sheet for Simultaneous Proximity–Pressure–Temperature Detection. Advanced Materials Technologies, 2021, 6, 2100616.	5.8	26
14	User-Interactive Robot Skin With Large-Area Scalability for Safer and Natural Human-Robot Collaboration in Future Telehealthcare. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 4276-4288.	6.3	12
15	IoT-Enabled Robot Skin System for Enhancement of Safe Human-Robot Interaction. Lecture Notes in Computer Science, 2021, , 457-468.	1.3	0
16	A Fully Printed Flexible Sensor Sheet for Simultaneous Proximity–Pressure–Temperature Detection (Adv. Mater. Technol. 11/2021). Advanced Materials Technologies, 2021, 6, 2170065.	5.8	0
17	A voted based random forests algorithm for smart grid distribution network faults prediction. Enterprise Information Systems, 2020, 14, 496-514.	4.7	13
18	DUAPM: An Effective Dynamic Micro-Blogging User Activity Prediction Model Towards Cyber-Physical-Social Systems. IEEE Transactions on Industrial Informatics, 2020, 16, 5317-5326.	11.3	9

Geng Yang

#	Article	IF	CITATIONS
19	IoT-Enabled Dual-Arm Motion Capture and Mapping for Telerobotics in Home Care. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1541-1549.	6.3	33
20	Feasibility study of mitigation and suppression strategies for controlling COVID-19 outbreaks in London and Wuhan. PLoS ONE, 2020, 15, e0236857.	2.5	32
21	Keep Healthcare Workers Safe: Application of Teleoperated Robot in Isolation Ward for COVID-19 Prevention and Control. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	3.7	71
22	Design and Implementation of Robot Skin Using Highly Sensitive Sponge Sensor. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 670-680.	3.2	9
23	Guest Editorial Enabling Technologies in Health Engineering and Informatics for the New Revolution of Healthcare 4.0. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2442-2443.	6.3	2
24	Packet Management for Optimizing Control Performance in Real-Time Feedback Control Systems. , 2020, , .		1
25	A Gait Recognition System for Interaction with a Homecare Mobile Robot. , 2020, , .		1
26	Homecare Robotic Systems for Healthcare 4.0: Visions and Enabling Technologies. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2535-2549.	6.3	94
27	Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8, 1-10.	3.7	35
28	A Sensor Glove Based on Inertial Measurement Unit for Robot Teleoperetion. , 2020, , .		3
29	Title is missing!. , 2020, 15, e0236857.		0
30	Title is missing!. , 2020, 15, e0236857.		0
31	Title is missing!. , 2020, 15, e0236857.		0
32	Title is missing!. , 2020, 15, e0236857.		0
33	A Sensor Clove for the Interaction with a Nursing-Care Assistive Robot. , 2019, , .		6
34	Anti-windup scheme of the electronic load sensing pump via switched flow/power control. Mechatronics, 2019, 61, 1-11.	3.3	4
35	Deadzone compensation control based on detection of micro flow rate in pilot stage of proportional directional valve. ISA Transactions, 2019, 94, 234-245.	5.7	16
36	Facile Fabrication of Highly Soft Tactile Sensor Based on Porous Sponge with Geometry Effect on Sensing Characteristics. , 2019, , .		2

Geng Yang

#	Article	IF	CITATIONS
37	Flexible Insole Sensors with Stably Connected Electrodes for Gait Phase Detection. Sensors, 2019, 19, 5197.	3.8	21
38	Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 2019, 12, 34-71.	18.0	52
39	cGAN Based Facial Expression Recognition for Human-Robot Interaction. IEEE Access, 2019, 7, 9848-9859.	4.2	67
40	WristCam: A Wearable Sensor for Hand Trajectory Gesture Recognition and Intelligent Human–Robot Interaction. IEEE Sensors Journal, 2019, 19, 8441-8451.	4.7	51
41	An IoT-Enabled Telerobotic-Assisted Healthcare System Based on Inertial Motion Capture. , 2019, , .		4
42	loT-Based Remote Pain Monitoring System: From Device to Cloud Platform. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1711-1719.	6.3	125
43	Tongue–Computer Interface Prototype Design Based on T-Type Magnet Localization for Smart Environment Control. Applied Sciences (Switzerland), 2018, 8, 2498.	2.5	5
44	A Novel Gesture Recognition System for Intelligent Interaction with a Nursing-Care Assistant Robot. Applied Sciences (Switzerland), 2018, 8, 2349.	2.5	20
45	Development of Flexible Robot Skin for Safe and Natural Human–Robot Collaboration. Micromachines, 2018, 9, 576.	2.9	57
46	Finger Angle-Based Hand Gesture Recognition for Smart Infrastructure Using Wearable Wrist-Worn Camera. Applied Sciences (Switzerland), 2018, 8, 369.	2.5	27
47	An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-10.	3.7	100
48	Introduction to the Special Section: Convergence of Automation Technology, Biomedical Engineering, and Health Informatics Toward the Healthcare 4.0. IEEE Reviews in Biomedical Engineering, 2018, 11, 249-259.	18.0	95
49	Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation. BioMed Research International, 2016, 2016, 1-10.	1.9	20
50	RF Interconnections for Paper Electronics. IEEE Microwave and Wireless Components Letters, 2015, 25, 684-686.	3.2	7
51	A Health-IoT Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Transactions on Industrial Informatics, 2014, 10, 2180-2191.	11.3	548
52	Wearable Internet of Things: Concept, Architectural Components and Promises for Person-Centered Healthcare. , 2014, , .		157
53	A Hybrid Low Power Biopatch for Body Surface Potential Measurement. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 591-599.	6.3	17
54	Bio-Patch Design and Implementation Based on a Low-Power System-on-Chip and Paper-Based Inkjet Printing Technology. IEEE Transactions on Information Technology in Biomedicine, 2012, 16, 1043-1050.	3.2	58