
Shingo Oda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6551417/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A comprehensive review of UDP-glucuronosyltransferase andÂesterasesÂforÂdrugÂdevelopment. Drug Metabolism and Pharmacokinetics, 2015, 30, 30-51.	2.2	186
2	Human UDP-Glucuronosyltransferase (UGT) 2B10 in Drug <i>N</i> -Glucuronidation: Substrate Screening and Comparison with UGT1A3 and UGT1A4. Drug Metabolism and Disposition, 2013, 41, 1389-1397.	3.3	47
3	Toxicological potential of acyl glucuronides and its assessment. Drug Metabolism and Pharmacokinetics, 2017, 32, 2-11.	2.2	44
4	Interactions between human UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A enzymes. Journal of Pharmaceutical Sciences, 2010, 99, 442-454.	3.3	37
5	Human UDP-Glucuronosyltransferase Isoforms Involved in Haloperidol Glucuronidation and Quantitative Estimation of Their Contribution. Drug Metabolism and Disposition, 2012, 40, 240-248.	3.3	35
6	A novel cell-based assay for the evaluation of immune- and inflammatory-related gene expression as biomarkers for the risk assessment of drug-induced liver injury. Toxicology Letters, 2016, 241, 60-70.	0.8	33
7	Identification of Specific MicroRNA Biomarkers in Early Stages of Hepatocellular Injury, Cholestasis, and Steatosis in Rats. Toxicological Sciences, 2018, 166, 228-239.	3.1	32
8	Progesterone Receptor Membrane Component 1 Modulates Human Cytochrome P450 Activities in an Isoform-Dependent Manner. Drug Metabolism and Disposition, 2011, 39, 2057-2065.	3.3	31
9	Epigenetic regulation of the tissue-specific expression of human UDP-glucuronosyltransferase (UGT) 1A10. Biochemical Pharmacology, 2014, 87, 660-667.	4.4	31
10	Preparation of a Specific Monoclonal Antibody against Human UDP-Glucuronosyltransferase (UGT) 1A9 and Evaluation of UGT1A9 Protein Levels in Human Tissues. Drug Metabolism and Disposition, 2012, 40, 1620-1627.	3.3	29
11	Epigenetic Regulation Is a Crucial Factor in the Repression of UGT1A1 Expression in the Human Kidney. Drug Metabolism and Disposition, 2013, 41, 1738-1743.	3.3	29
12	Development of a cell-based assay system considering drug metabolism and immune- and inflammatory-related factors for the risk assessment of drug-induced liver injury. Toxicology Letters, 2014, 228, 13-24.	0.8	25
13	Toxicological role of an acyl glucuronide metabolite in diclofenacâ€induced acute liver injury in mice. Journal of Applied Toxicology, 2017, 37, 545-553.	2.8	25
14	Models of Idiosyncratic Drug-Induced Liver Injury. Annual Review of Pharmacology and Toxicology, 2021, 61, 247-268.	9.4	24
15	Establishment of a mouse model for amiodaroneâ€induced liver injury and analyses of its hepatotoxic mechanism. Journal of Applied Toxicology, 2016, 36, 35-47.	2.8	22
16	Kupffer cellâ€mediated exacerbation of methimazoleâ€induced acute liver injury in rats. Journal of Applied Toxicology, 2016, 36, 702-715.	2.8	21
17	Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicology in Vitro, 2018, 48, 286-301.	2.4	21
18	Zomepirac Acyl Glucuronide Is Responsible for Zomepirac-Induced Acute Kidney Injury in Mice. Drug Metabolism and Disposition, 2016, 44, 888-896.	3.3	20

Shingo Oda

#	Article	IF	CITATIONS
19	miRNA in Rat Liver Sinusoidal Endothelial Cells and Hepatocytes and Application to Circulating Biomarkers that Discern Pathogenesis of Liver Injuries. American Journal of Pathology, 2018, 188, 916-928.	3.8	20
20	Targeted Screen for Human UDP-Clucuronosyltransferases Inhibitors and the Evaluation of Potential Drug-Drug Interactions with Zafirlukast. Drug Metabolism and Disposition, 2015, 43, 812-818.	3.3	18
21	Comprehensive analysis of serum microRNAs in hepatic sinusoidal obstruction syndrome (SOS) in rats: implication as early phase biomarkers for SOS. Archives of Toxicology, 2018, 92, 2947-2962.	4.2	16
22	A scrutiny of circulating microRNA biomarkers for drug-induced tubular and glomerular injury in rats. Toxicology, 2019, 415, 26-36.	4.2	15
23	An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Archives of Toxicology, 2021, 95, 149-168.	4.2	14
24	Establishment of a drug-induced rhabdomyolysis mouse model by co-administration of ciprofloxacin and atorvastatin. Toxicology Letters, 2018, 291, 184-193.	0.8	13
25	Comparative hepatic transcriptome analyses revealed possible pathogenic mechanisms of fasiglifam (TAK-875)-induced acute liver injury in mice. Chemico-Biological Interactions, 2018, 296, 185-197.	4.0	13
26	Establishment and characterization of a mouse model of rhabdomyolysis by coadministration of statin and fibrate. Toxicology Letters, 2019, 307, 49-58.	0.8	12
27	MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice. Toxicology and Applied Pharmacology, 2016, 307, 1-9.	2.8	11
28	Pathogenetic analyses of carbamazepine-induced liver injury in F344 rats focused on immune- and inflammation-related factors. Experimental and Toxicologic Pathology, 2016, 68, 27-38.	2.1	11
29	Allopurinol induces innate immune responses through mitogenâ€activated protein kinase signaling pathways in HLâ€60 cells. Journal of Applied Toxicology, 2016, 36, 1120-1128.	2.8	9
30	Evaluation of Expression and Glycosylation Status of UGT1A10 in Supersomes and Intestinal Epithelial Cells with a Novel Specific UGT1A10 Monoclonal Antibody. Drug Metabolism and Disposition, 2017, 45, 1027-1034.	3.3	9
31	Macrophage-derived extracellular vesicles regulate concanavalin A-induced hepatitis by suppressing macrophage cytokine production. Toxicology, 2020, 443, 152544.	4.2	9
32	Interpretation of the Effects of Protein Kinase C Inhibitors on Human UDP-glucuronosyltransferase 1A (UGT1A) Proteins in cellulo. Drug Metabolism and Pharmacokinetics, 2011, 26, 256-265.	2.2	8
33	Establishment of a novel mouse model for pioglitazone-induced skeletal muscle injury. Toxicology, 2017, 382, 1-9.	4.2	8
34	Establishment of a mouse model of enalapril-induced liver injury and investigation of the pathogenesis. Laboratory Investigation, 2017, 97, 833-842.	3.7	8
35	Fluoroquinolones and propionic acid derivatives induce inflammatory responses in vitro. Cell Biology and Toxicology, 2018, 34, 65-77.	5.3	8
36	Establishment of a mouse model of troglitazoneâ€induced liver injury and analysis of its hepatotoxic mechanism. Journal of Applied Toxicology, 2019, 39, 1541-1556.	2.8	8

Shingo Oda

#	Article	IF	CITATIONS
37	Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metabolism and Pharmacokinetics, 2021, 37, 100372.	2.2	8
38	Exploration of small RNA biomarkers for testicular injury in the serum exosomes of rats. Toxicology, 2020, 440, 152490.	4.2	7
39	Inhibitory and inductive effects of Phikud Navakot extract on human cytochrome P450. Drug Metabolism and Pharmacokinetics, 2016, 31, 210-217.	2.2	6
40	Acute kidney injury model established by systemic glutathione depletion in mice. Journal of Applied Toxicology, 2019, 39, 919-930.	2.8	5
41	Strain and interindividual differences in lamotrigineâ€induced liver injury in mice. Journal of Applied Toxicology, 2019, 39, 451-460.	2.8	4
42	Neutrophil depletion protects against zomepirac-induced acute kidney injury in mice. Chemico-Biological Interactions, 2018, 279, 102-110.	4.0	2
43	Plasma miRâ€218aâ€5p as a biomarker for acute cholestatic liver injury in rats and investigation of its pathophysiological roles. Journal of Applied Toxicology, 2021, 41, 1537-1552.	2.8	2
44	Characterization of human UGT2A3 expression using a prepared specific antibody against UGT2A3. Drug Metabolism and Pharmacokinetics, 2019, 34, 280-286.	2.2	1
45	Pharmacological evidence for the involvement of ryanodine receptors in halothane-induced liver injury in mice. Toxicology, 2020, 443, 152560.	4.2	1
46	Recent Progress and Prospect of Drug Metabolism/Pharmacokinetics Research Contributing to Drug Development. Kagaku To Seibutsu, 2017, 55, 412-420.	0.0	0