
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6551255/publications.pdf Version: 2024-02-01



LODDI ALBERCH

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Meridianins Rescue Cognitive Deficits, Spine Density and Neuroinflammation in the 5xFAD Model of<br>Alzheimer's Disease. Frontiers in Pharmacology, 2022, 13, 791666.                                                    | 1.6 | 5         |
| 2  | Pyk2 Regulates MAMs and Mitochondrial Dynamics in Hippocampal Neurons. Cells, 2022, 11, 842.                                                                                                                             | 1.8 | 2         |
| 3  | RTP801/REDD1 Is Involved in Neuroinflammation and Modulates Cognitive Dysfunction in Huntington's<br>Disease. Biomolecules, 2022, 12, 34.                                                                                | 1.8 | 2         |
| 4  | Inflammation in multiple sclerosis induces a specific reactive astrocyte state driving<br>nonâ€cellâ€autonomous neuronal damage. Clinical and Translational Medicine, 2022, 12, e837.                                    | 1.7 | 4         |
| 5  | RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer's<br>disease. Cell Death and Disease, 2021, 12, 616.                                                                          | 2.7 | 19        |
| 6  | RTP801 regulates motor cortex synaptic transmission and learning. Experimental Neurology, 2021, 342, 113755.                                                                                                             | 2.0 | 4         |
| 7  | Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor<br>Function in Huntington's Disease Models: Role of PAC1 Receptor. Frontiers in Pharmacology, 2021, 12,<br>797541. | 1.6 | 8         |
| 8  | Unraveling the Spatiotemporal Distribution of VPS13A in the Mouse Brain. International Journal of<br>Molecular Sciences, 2021, 22, 13018.                                                                                | 1.8 | 2         |
| 9  | Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. Experimental Neurology, 2020, 323, 113095.                                                                        | 2.0 | 4         |
| 10 | Decreased Myocyte Enhancer Factor 2 Levels in the Hippocampus of Huntington's Disease Mice Are<br>Related to Cognitive Dysfunction. Molecular Neurobiology, 2020, 57, 4549-4562.                                         | 1.9 | 9         |
| 11 | Synaptic RTP801 contributes to motor-learning dysfunction in Huntington's disease. Cell Death and Disease, 2020, 11, 569.                                                                                                | 2.7 | 10        |
| 12 | Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death and Disease, 2020, 11, 411.                                                                       | 2.7 | 38        |
| 13 | Deficits in coordinated neuronal activity and network topology are striatal hallmarks in<br>Huntington's disease. BMC Biology, 2020, 18, 58.                                                                             | 1.7 | 11        |
| 14 | Lack of Helios During Neural Development Induces Adult Schizophrenia-Like Behaviors Associated<br>With Aberrant Levels of the TRIF-Recruiter Protein WDFY1. Frontiers in Cellular Neuroscience, 2020,<br>14, 93.         | 1.8 | 6         |
| 15 | Reduced Fractalkine Levels Lead to Striatal Synaptic Plasticity Deficits in Huntington's Disease.<br>Frontiers in Cellular Neuroscience, 2020, 14, 163.                                                                  | 1.8 | 32        |
| 16 | Human Pluripotent Stem Cell-Derived Neurons Are Functionally Mature In Vitro and Integrate into the<br>Mouse Striatum Following Transplantation. Molecular Neurobiology, 2020, 57, 2766-2798.                            | 1.9 | 22        |
| 17 | Meridianins and Lignarenone B as Potential GSK3Î <sup>2</sup> Inhibitors and Inductors of Structural Neuronal<br>Plasticity. Biomolecules, 2020, 10, 639.                                                                | 1.8 | 15        |
| 18 | Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for<br>Huntington's disease. ELife, 2020, 9, .                                                                              | 2.8 | 20        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | M2 cortex-dorsolateral striatum stimulation reverses motor symptoms and synaptic deficits in<br>Huntington's disease. ELife, 2020, 9, .                                                                                          | 2.8 | 25        |
| 20 | Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning. Molecular Neurobiology, 2019, 56, 1475-1487.                                                                                                                  | 1.9 | 11        |
| 21 | Early Downregulation of p75NTR by Genetic and Pharmacological Approaches Delays the Onset of<br>Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice. Molecular Neurobiology, 2019,<br>56, 935-953.              | 1.9 | 21        |
| 22 | Increased translation as a novel pathogenic mechanism in Huntington's disease. Brain, 2019, 142,<br>3158-3175.                                                                                                                   | 3.7 | 43        |
| 23 | Pyk2 in the amygdala modulates chronic stress sequelae via PSD-95-related micro-structural changes.<br>Translational Psychiatry, 2019, 9, 3.                                                                                     | 2.4 | 22        |
| 24 | Conditional BDNF delivery from astrocytes rescues memory deficits, spine density and synaptic properties in the 5xFAD mouse model of Alzheimer disease. Journal of Neuroscience, 2019, 39, 2121-18.                              | 1.7 | 105       |
| 25 | Cyclin-Dependent Kinase 5 Dysfunction Contributes to Depressive-like Behaviors in Huntington's<br>Disease by Altering the DARPP-32 Phosphorylation Status in the Nucleus Accumbens. Biological<br>Psychiatry, 2019, 86, 196-207. | 0.7 | 17        |
| 26 | A FBN1 3′UTR mutation variant is associated with endoplasmic reticulum stress in aortic aneurysm in<br>Marfan syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 107-114.                         | 1.8 | 18        |
| 27 | Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration. Molecular<br>Neurobiology, 2018, 55, 7728-7742.                                                                                              | 1.9 | 12        |
| 28 | Huntington's disease: novel therapeutic perspectives hanging in the balance. Expert Opinion on<br>Therapeutic Targets, 2018, 22, 385-399.                                                                                        | 1.5 | 10        |
| 29 | Cdk5 Contributes to Huntington's Disease Learning and Memory Deficits via Modulation of Brain<br>Region-Specific Substrates. Molecular Neurobiology, 2018, 55, 6250-6268.                                                        | 1.9 | 19        |
| 30 | Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity<br>and Improves Memory Performance in Huntington's Disease. Molecular Neurobiology, 2018, 55,<br>8263-8277.                  | 1.9 | 36        |
| 31 | Age-related changes in STriatal-Enriched protein tyrosine Phosphatase levels: Regulation by BDNF.<br>Molecular and Cellular Neurosciences, 2018, 86, 41-49.                                                                      | 1.0 | 9         |
| 32 | Pharmacogenetic modulation of STEP improves motor and cognitive function in a mouse model of Huntington's disease. Neurobiology of Disease, 2018, 120, 88-97.                                                                    | 2.1 | 12        |
| 33 | Human alpha 1-antitrypsin protects neurons and glial cells against oxygen and glucose deprivation<br>through inhibition of interleukins expression. Biochimica Et Biophysica Acta - General Subjects, 2018,<br>1862, 1852-1861.  | 1.1 | 9         |
| 34 | Social Memory and Social Patterns Alterations in the Absence of STriatal-Enriched Protein Tyrosine<br>Phosphatase. Frontiers in Behavioral Neuroscience, 2018, 12, 317.                                                          | 1.0 | 11        |
| 35 | Chelerythrine promotes Ca2+-dependent calpain activation in neuronal cells in a PKC-independent<br>manner. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 922-935.                                                | 1.1 | 11        |
| 36 | 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington's disease mouse model<br>through specific activation of the PLCl³1 pathway. Human Molecular Genetics, 2017, 26, 3144-3160.                         | 1.4 | 44        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a<br>Huntington's disease model. Nature Communications, 2017, 8, 15592.                                                                       | 5.8 | 81        |
| 38 | The AMPA receptor positive allosteric modulator S 47445 rescues inÂvivo CA3-CA1 long-term potentiation and structural synaptic changes in old mice. Neuropharmacology, 2017, 123, 395-409.                                            | 2.0 | 22        |
| 39 | Developmental alterations in Huntington's disease neural cells and pharmacological rescue in cells and mice. Nature Neuroscience, 2017, 20, 648-660.                                                                                  | 7.1 | 199       |
| 40 | <i>Helios</i> expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development (Cambridge), 2017, 144, 1566-1577.                                                                              | 1.2 | 17        |
| 41 | Methylthioadenosine promotes remyelination by inducing oligodendrocyte differentiation. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .                                                                                    | 1.1 | 2         |
| 42 | Metabolic profiling for the identification of Huntington biomarkers by onâ€line solidâ€phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools. Electrophoresis, 2016, 37, 795-808.   | 1.3 | 28        |
| 43 | Loss of striatal 90-kDa ribosomal S6 kinase (Rsk) is a key factor for motor, synaptic and transcription<br>dysfunction in Huntington's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016,<br>1862, 1255-1266. | 1.8 | 5         |
| 44 | Striatal-enriched protein tyrosine phosphatase modulates nociception. Pain, 2016, 157, 377-386.                                                                                                                                       | 2.0 | 17        |
| 45 | Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington's disease by the induction of BDNF-dependent synaptic plasticity. Neurobiology of Disease, 2016, 95, 22-34.                                  | 2.1 | 28        |
| 46 | BDNF Induces Striatal-Enriched Protein Tyrosine Phosphatase 61 Degradation Through the Proteasome.<br>Molecular Neurobiology, 2016, 53, 4261-4273.                                                                                    | 1.9 | 22        |
| 47 | RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death. Molecular Neurobiology, 2016, 53, 2857-2868.                                                                                                                              | 1.9 | 19        |
| 48 | Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity: implications for Parkinson's disease. Oncotarget, 2016, 7, 58813-58831.                                                                                            | 0.8 | 21        |
| 49 | Cryostat Slice Irregularities May Introduce Bias in Tissue Thickness Estimation: Relevance for Cell<br>Counting Methods. Microscopy and Microanalysis, 2015, 21, 893-901.                                                             | 0.2 | 1         |
| 50 | Quantitative high-throughput gene expression profiling of human striatal development to screen<br>stem cell–derived medium spiny neurons. Molecular Therapy - Methods and Clinical Development, 2015,<br>2, 15030.                    | 1.8 | 18        |
| 51 | Aberrant epigenome in <scp>iPSC</scp> â€derived dopaminergic neurons from Parkinson's disease<br>patients. EMBO Molecular Medicine, 2015, 7, 1529-1546.                                                                               | 3.3 | 117       |
| 52 | Novel Epigallocatechin-3-Gallate (EGCG) Derivative as a New Therapeutic Strategy for Reducing<br>Neuropathic Pain after Chronic Constriction Nerve Injury in Mice. PLoS ONE, 2015, 10, e0123122.                                      | 1.1 | 29        |
| 53 | Cdk5-mediated mitochondrial fission: A key player in dopaminergic toxicity in Huntington's disease.<br>Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2145-2160.                                             | 1.8 | 35        |
| 54 | Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease. Human<br>Molecular Genetics, 2015, 24, 5040-5052.                                                                                        | 1.4 | 33        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75 <sup>NTR</sup> up-regulation and astrocyte-mediated inflammation. Human Molecular Genetics, 2015, 24, 4958-4970.                | 1.4  | 107       |
| 56 | A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease. Human Molecular<br>Genetics, 2015, 24, 7265-7285.                                                                                                           | 1.4  | 45        |
| 57 | Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Neurobiology of Disease, 2015, 74, 41-57.                                                                                                   | 2.1  | 40        |
| 58 | Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's<br>disease. Cell Death and Disease, 2014, 5, e1364-e1364.                                                                                            | 2.7  | 40        |
| 59 | Early Down-Regulation of PKCδ as a Pro-Survival Mechanism in Huntington's Disease. NeuroMolecular<br>Medicine, 2014, 16, 25-37.                                                                                                                   | 1.8  | 17        |
| 60 | Prostaglandin E2 EP1 Receptor Antagonist Improves Motor Deficits and Rescues Memory Decline in R6/1<br>Mouse Model of Huntington's Disease. Molecular Neurobiology, 2014, 49, 784-795.                                                            | 1.9  | 32        |
| 61 | M17 Targeting Dopamine D1-histamine H3 Receptor Heteromers As A Therapeutical Strategy To Prevent<br>Cognitive Deficits And Neurodegeneration In Huntington's Disease. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2014, 85, A100-A100. | 0.9  | 0         |
| 62 | Neurotrophin receptor p75NTR mediates Huntington's disease–associated synaptic and memory<br>dysfunction. Journal of Clinical Investigation, 2014, 124, 4411-4428.                                                                                | 3.9  | 95        |
| 63 | Differential Neuroprotective Effects of 5′-Deoxy-5′-Methylthioadenosine. PLoS ONE, 2014, 9, e90671.                                                                                                                                               | 1.1  | 13        |
| 64 | Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nature Medicine, 2013, 19, 1030-1038.                                                                                          | 15.2 | 108       |
| 65 | Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice.<br>Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1241-1248.                                                            | 1.8  | 37        |
| 66 | Neurobehavioral characterization of Endonuclease G knockout mice reveals a new putative molecular player in the regulation of anxiety. Experimental Neurology, 2013, 247, 122-129.                                                                | 2.0  | 7         |
| 67 | Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington's disease. Neurobiology of Disease, 2013, 52, 219-228.                                                                                               | 2.1  | 44        |
| 68 | A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing<br>N-terminal fragments of mutant huntingtin. Human Molecular Genetics, 2013, 22, 3869-3882.                                                      | 1.4  | 93        |
| 69 | PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington's disease mouse model. Hippocampus, 2013, 23, 684-695.                                                                    | 0.9  | 70        |
| 70 | Imbalance of p75NTR/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies. Cell Death and Disease, 2013, 4, e595-e595.                                                                                       | 2.7  | 83        |
| 71 | Regulation of Hippocampal cGMP Levels as a Candidate to Treat Cognitive Deficits in Huntington's<br>Disease. PLoS ONE, 2013, 8, e73664.                                                                                                           | 1.1  | 53        |
| 72 | <i>Helios</i> Transcription Factor Expression Depends on <i>Gsx2</i> and <i>Dlx1&amp;2</i> Function in Developing Striatal Matrix Neurons. Stem Cells and Development, 2012, 21, 2239-2251.                                                       | 1.1  | 31        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Age-dependent decline of motor neocortex but not hippocampal performance in heterozygous BDNF<br>mice correlates with a decrease of cortical PSD-95 but an increase of hippocampal TrkB levels.<br>Experimental Neurology, 2012, 237, 335-345. | 2.0 | 22        |
| 74 | Activation of Elkâ€1 participates as a neuroprotective compensatory mechanism in models of<br>Huntington's disease. Journal of Neurochemistry, 2012, 121, 639-648.                                                                             | 2.1 | 27        |
| 75 | Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.          | 1.0 | 5         |
| 76 | Cognitive Dysfunction in Huntington's Disease: Humans, Mouse Models and Molecular Mechanisms.<br>Journal of Huntington's Disease, 2012, 1, 155-173.                                                                                            | 0.9 | 57        |
| 77 | Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Human Molecular Genetics, 2012, 21, 1203-1216.                                                                                   | 1.4 | 133       |
| 78 | Diseaseâ€specific phenotypes in dopamine neurons from human iPSâ€based models of genetic and sporadic<br>Parkinson's disease. EMBO Molecular Medicine, 2012, 4, 380-395.                                                                       | 3.3 | 501       |
| 79 | The dopaminergic stabilizer, (â~)-OSU6162, rescues striatal neurons with normal and expanded<br>polyglutamine chains in huntingtin protein from exposure to free radicals and mitochondrial toxins.<br>Brain Research, 2012, 1459, 100-112.    | 1.1 | 9         |
| 80 | Striatal-Enriched Protein Tyrosine Phosphatase Expression and Activity in Huntington's Disease: A STEP in the Resistance to Excitotoxicity. Journal of Neuroscience, 2011, 31, 8150-8162.                                                      | 1.7 | 63        |
| 81 | Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Molecular Neurodegeneration, 2011, 6, 71.                                                                     | 4.4 | 91        |
| 82 | Increased 90-kDa ribosomal S6 kinase (Rsk) activity is protective against mutant huntingtin toxicity.<br>Molecular Neurodegeneration, 2011, 6, 74.                                                                                             | 4.4 | 16        |
| 83 | Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain,<br>2011, 134, 119-136.                                                                                                                | 3.7 | 178       |
| 84 | Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington's disease. Human Molecular Genetics, 2011, 20, 4232-4247.                                                                                           | 1.4 | 99        |
| 85 | Bax and Calpain Mediate Excitotoxic Oligodendrocyte Death Induced by Activation of Both AMPA and<br>Kainate Receptors. Journal of Neuroscience, 2011, 31, 2996-3006.                                                                           | 1.7 | 55        |
| 86 | Ikarosâ€l couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. Journal of Comparative Neurology, 2010, 518, 329-351.                                                                            | 0.9 | 36        |
| 87 | Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling. Neural Development, 2010, 5, 21.                                                                                                                       | 1.1 | 28        |
| 88 | Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington's disease.<br>Journal of Neurochemistry, 2010, 115, 153-167.                                                                                              | 2.1 | 76        |
| 89 | BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. Gene Therapy, 2010, 17, 1294-1308.                                                                      | 2.3 | 90        |
| 90 | PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the<br>PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death and Differentiation, 2010,<br>17, 324-335.                     | 5.0 | 49        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | THE EXPANDING CLINICAL PROFILE OF ANTI-AMPA RECEPTOR ENCEPHALITIS. Neurology, 2010, 74, 857-859.                                                                                                                                | 1.5 | 143       |
| 92  | Age-Dependent Maintenance of Motor Controland Corticostriatal Innervation by Death Receptor 3.<br>Journal of Neuroscience, 2010, 30, 3782-3792.                                                                                 | 1.7 | 21        |
| 93  | Impaired TrkB-mediated ERK1/2 Activation in Huntington Disease Knock-in Striatal Cells Involves Reduced p52/p46 Shc Expression. Journal of Biological Chemistry, 2010, 285, 21537-21548.                                        | 1.6 | 58        |
| 94  | Animal Models of Huntington's Disease. , 2009, , 429-436.                                                                                                                                                                       |     | 4         |
| 95  | Altered P2X7â€receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB Journal, 2009, 23, 1893-1906.                                                    | 0.2 | 206       |
| 96  | Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington's disease: Role<br>in excitotoxicity. Neurobiology of Disease, 2009, 36, 461-469.                                                          | 2.1 | 36        |
| 97  | Cytotoxic effect of neuromyelitis optica antibody (NMO-lgG) to astrocytes: An in vitro study. Journal of Neuroimmunology, 2009, 215, 31-35.                                                                                     | 1.1 | 91        |
| 98  | Mutant Huntingtin Impairs Post-Golgi Trafficking to Lysosomes by Delocalizing Optineurin/Rab8<br>Complex from the Golgi Apparatus. Molecular Biology of the Cell, 2009, 20, 1478-1492.                                          | 0.9 | 145       |
| 99  | Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: Involvement of phospholipaseCl³ activity and glutamate receptor expression. Neuroscience, 2009, 158, 1234-1250. | 1.1 | 98        |
| 100 | Brain-derived neurotrophic factor (BDNF) mediates bone morphogenetic protein-2 (BMP-2) effects on cultured striatal neurones. Journal of Neurochemistry, 2008, 79, 747-755.                                                     | 2.1 | 38        |
| 101 | Calcineurin is involved in the early activation of NMDAâ€mediated cell death in mutant huntingtin<br>knockâ€in striatal cells. Journal of Neurochemistry, 2008, 105, 1596-1612.                                                 | 2.1 | 52        |
| 102 | Analysis of antibodies to neuronal surface antigens in adult opsoclonus–myoclonus. Journal of<br>Neuroimmunology, 2008, 196, 188-191.                                                                                           | 1.1 | 19        |
| 103 | Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiology of Disease, 2008, 29, 409-421.                        | 2.1 | 38        |
| 104 | Bax deficiency promotes an up-regulation of BimEL and Bak during striatal and cortical postnatal development, and after excitotoxic injury. Molecular and Cellular Neurosciences, 2008, 37, 663-672.                            | 1.0 | 7         |
| 105 | Dopaminergic and Glutamatergic Signaling Crosstalk in Huntington's Disease Neurodegeneration: The<br>Role of p25/Cyclin-Dependent Kinase 5. Journal of Neuroscience, 2008, 28, 10090-10101.                                     | 1.7 | 112       |
| 106 | Dynamics of an F-actin aggresome generated by the actin-stabilizing toxin jasplakinolide. Journal of<br>Cell Science, 2008, 121, 1415-1425.                                                                                     | 1.2 | 68        |
| 107 | Dissociation between CA3-CA1 Synaptic Plasticity and Associative Learning in TgNTRK3 Transgenic Mice.<br>Journal of Neuroscience, 2007, 27, 2253-2260.                                                                          | 1.7 | 44        |
| 108 | Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the<br>striatum through increased expression of N-methyl-d-aspartate receptors. Neuroscience, 2007, 144,<br>462-471.                   | 1.1 | 15        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Interplay of leukemia inhibitory factor and retinoic acid on neural differentiation of mouse embryonic stem cells. Journal of Neuroscience Research, 2007, 85, 2686-2701.                                                                                | 1.3 | 27        |
| 110 | BH3-only proteins Bid and BimEL are differentially involved in neuronal dysfunction in mouse models of Huntington's disease. Journal of Neuroscience Research, 2007, 85, 2756-2769.                                                                      | 1.3 | 30        |
| 111 | Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Therapy, 2007, 14, 118-128.                                                                                       | 2.3 | 71        |
| 112 | Effect of glatiramer acetate (Copaxone®) on the immunophenotypic and cytokine profile and BDNF production in multiple sclerosis: A longitudinal study. Neuroscience Letters, 2006, 406, 270-275.                                                         | 1.0 | 53        |
| 113 | Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.<br>European Journal of Neuroscience, 2006, 23, 649-658.                                                                                                 | 1.2 | 121       |
| 114 | Transgenic mice overexpressing the full-length neurotrophin receptor TrkC exhibit increased catecholaminergic neuron density in specific brain areas and increased anxiety-like behavior and panic reaction. Neurobiology of Disease, 2006, 24, 403-418. | 2.1 | 50        |
| 115 | Glial cell line-derived neurotrophic factor promotes the arborization of cultured striatal neurons through the p42/p44 mitogen-activated protein kinase pathway. Journal of Neuroscience Research, 2006, 83, 68-79.                                      | 1.3 | 19        |
| 116 | Mutant huntingtin Impairs the Post-Golgi Trafficking of Brain-Derived Neurotrophic Factor But Not<br>Its Val66Met Polymorphism. Journal of Neuroscience, 2006, 26, 12748-12757.                                                                          | 1.7 | 71        |
| 117 | Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. Journal of Clinical Investigation, 2006, 116, 1410-1424.                                                                                    | 3.9 | 211       |
| 118 | Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington's disease. Histology and Histopathology, 2006, 21, 1217-32.                                                                       | 0.5 | 28        |
| 119 | Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. Journal of Neurochemistry, 2005, 92, 678-691.                                                             | 2.1 | 57        |
| 120 | Brain-derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of<br>Huntington's disease. Journal of Neurochemistry, 2005, 93, 1057-1068.                                                                                | 2.1 | 67        |
| 121 | Association between BDNF Val66Met polymorphism and age at onset in Huntington disease. Neurology, 2005, 65, 964-965.                                                                                                                                     | 1.5 | 36        |
| 122 | Long-Term Expression of Erythropoietin from Myoblasts Immobilized in Biocompatible and<br>Neovascularized Microcapsules. Molecular Therapy, 2005, 12, 283-289.                                                                                           | 3.7 | 70        |
| 123 | Full Motor Recovery Despite Striatal Neuron Loss and Formation of Irreversible Amyloid-Like<br>Inclusions in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2005, 25,<br>9773-9781.                                         | 1.7 | 73        |
| 124 | Endogenous brain-derived neurotrophic factor protects dopaminergic nigral neurons against<br>transneuronal degeneration induced by striatal excitotoxic injury. Molecular Brain Research, 2005,<br>134, 147-154.                                         | 2.5 | 31        |
| 125 | Evolution of brain-derived neurotrophic factor levels after autologous hematopietic stem cell<br>transplantation in multiple sclerosis. Neuroscience Letters, 2005, 380, 122-126.                                                                        | 1.0 | 14        |
| 126 | The vulnerability of striatal projection neurons and interneurons to excitotoxicity is differentially regulated by dopamine during development. International Journal of Developmental Neuroscience, 2005, 23, 343-349.                                  | 0.7 | 8         |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Brain-Derived Neurotrophic Factor Regulates the Onset and Severity of Motor Dysfunction<br>Associated with Enkephalinergic Neuronal Degeneration in Huntington's Disease. Journal of<br>Neuroscience, 2004, 24, 7727-7739.                                          | 1.7 | 323       |
| 128 | Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Experimental Neurology, 2004, 190, 42-58.                                                                                          | 2.0 | 69        |
| 129 | Differential involvement of phosphatidylinositol 3-kinase and p42/p44 mitogen activated protein kinase pathways in brain-derived neurotrophic factor-induced trophic effects on cultured striatal neurons. Molecular and Cellular Neurosciences, 2004, 25, 460-468. | 1.0 | 31        |
| 130 | Disruption of EphA/ephrin-A signaling in the nigrostriatal system reduces dopaminergic innervation<br>and dissociates behavioral responses to amphetamine and cocaine. Molecular and Cellular<br>Neurosciences, 2004, 26, 418-428.                                  | 1.0 | 53        |
| 131 | Neurotrophic factors in Huntington's disease. Progress in Brain Research, 2004, 146, 197-229.                                                                                                                                                                       | 0.9 | 67        |
| 132 | Intranigral infusion of interleukinâ€1β activates astrocytes and protects from subsequent<br>6â€hydroxydopamine neurotoxicity. Journal of Neurochemistry, 2003, 85, 651-661.                                                                                        | 2.1 | 58        |
| 133 | Therapeutic strategies in Huntington's disease. Expert Opinion on Therapeutic Patents, 2003, 13,<br>449-465.                                                                                                                                                        | 2.4 | 3         |
| 134 | Excitatory Amino Acids Differentially Regulate the Expression of GDNF, Neurturin, and Their Receptors in the Adult Rat Striatum. Experimental Neurology, 2002, 174, 243-252.                                                                                        | 2.0 | 48        |
| 135 | Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of<br>Huntington's disease. Brain Research Bulletin, 2002, 57, 817-822.                                                                                                           | 1.4 | 108       |
| 136 | Bone morphogenetic protein-6 is a neurotrophic factor for calbindin-positive striatal neurons.<br>Journal of Neuroscience Research, 2002, 70, 638-644.                                                                                                              | 1.3 | 20        |
| 137 | Striatopallidal neurons are selectively protected by neurturin in an excitotoxic model of Huntington's disease. Journal of Neurobiology, 2002, 50, 323-332.                                                                                                         | 3.7 | 12        |
| 138 | BMP-2 and cAMP elevation confer locus coeruleus neurons responsiveness to multiple neurotrophic factors. Journal of Neurobiology, 2002, 50, 291-304.                                                                                                                | 3.7 | 23        |
| 139 | Regulation of c-Ret, GFRα1, and GFRα2 in the substantia nigraPars compactain a rat model of Parkinson's<br>disease. Journal of Neurobiology, 2002, 52, 343-351.                                                                                                     | 3.7 | 34        |
| 140 | Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5 Prevent the Death of<br>Striatal Projection Neurons in a Rodent Model of Huntington's Disease. Journal of Neurochemistry,<br>2002, 75, 2190-2199.                                           | 2.1 | 173       |
| 141 | Differential Effects of Glial Cell Line-Derived Neurotrophic Factor and Neurturin on Developing and<br>Adult Substantia Nigra Dopaminergic Neurons. Journal of Neurochemistry, 2002, 73, 70-78.                                                                     | 2.1 | 151       |
| 142 | TrkB and TrkC Are Differentially Regulated by Excitotoxicity during Development of the Basal Ganglia.<br>Experimental Neurology, 2001, 172, 282-292.                                                                                                                | 2.0 | 15        |
| 143 | Bone morphogenetic protein-2, but not bone morphogenetic protein-7, promotes dendritic growth and calbindin phenotype in cultured rat striatal neurons. Neuroscience, 2001, 104, 783-790.                                                                           | 1.1 | 23        |
| 144 | Expression of Brain-Derived Neurotrophic Factor in Cortical Neurons Is Regulated by Striatal Target<br>Area. Journal of Neuroscience, 2001, 21, 117-124.                                                                                                            | 1.7 | 97        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. Journal of Neurochemistry, 2001, 78, 1287-1296.                                                                                  | 2.1 | 78        |
| 146 | Developmental Regulation of BDNF and NT-3 Expression by Quinolinic Acid in the Striatum and Its Main Connections. Experimental Neurology, 2000, 165, 118-124.                                                                                 | 2.0 | 17        |
| 147 | Repeated intracerebroventricular administration of β-amyloid 25–35 to rats decreases muscarinic receptors in cerebral cortex. Neuroscience Letters, 2000, 278, 69-72.                                                                         | 1.0 | 28        |
| 148 | Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's<br>disease. Neuroscience, 2000, 98, 89-96.                                                                                                 | 1.1 | 51        |
| 149 | Intrastriatal grafting of a GDNF-producing cell line protects striatonigral neurons from quinolinic<br>acid excitotoxicityinâ€∫vivo. European Journal of Neuroscience, 1999, 11, 241-249.                                                     | 1.2 | 52        |
| 150 | Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. Journal of Neurobiology, 1999, 38, 161-170.                                               | 3.7 | 53        |
| 151 | Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 differentially regulate the phenotype and prevent degenerative changes in striatal projection neurons after excitotoxicity in vivo. Neuroscience, 1999, 91, 1257-1264. | 1.1 | 63        |
| 152 | The neurotrophin receptors trkA, trkB and trkC are differentially regulated after excitotoxic lesion<br>in rat striatum. Molecular Brain Research, 1999, 69, 242-248.                                                                         | 2.5 | 34        |
| 153 | Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. , 1999, 38, 161.                                                                          |     | 8         |
| 154 | Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. Journal of Neurobiology, 1999, 38, 161-70.                                                | 3.7 | 19        |
| 155 | Localization of the neuronal antigen recognized by anti-Tr antibodies from patients with<br>paraneoplastic cerebellar degeneration and Hodgkin's disease in the rat nervous system. Acta<br>Neuropathologica, 1998, 96, 1-7.                  | 3.9 | 58        |
| 156 | Differential Regulation of the Expression of Nerve Growth Factor, Brain-Derived Neurotrophic<br>Factor, and Neurotrophin-3 after Excitotoxicity in a Rat Model of Huntington's Disease. Neurobiology<br>of Disease, 1998, 5, 357-364.         | 2.1 | 43        |
| 157 | BDNF Upâ€Regulates TrkB Protein and Prevents the Death of CA1 Neurons Following Transient Forebrain<br>Ischemia. Brain Pathology, 1998, 8, 253-261.                                                                                           | 2.1 | 79        |
| 158 | A BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) RELATED SYSTEM IS INVOLVED IN THE MAINTENANCE OF THE POLYINNERVATE TORPEDO ELECTRIC ORGAN. Neurochemistry International, 1997, 31, 33-38.                                                          | 1.9 | 2         |
| 159 | Neuroprotective effect of neurotrophic factors in experimental models of neurodegenerative<br>disorders. Methods and Findings in Experimental and Clinical Pharmacology, 1997, 19 Suppl A, 63-4.                                              | 0.8 | 0         |
| 160 | Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Neuroscience, 1996, 75, 345-352.                                                                                      | 1.1 | 83        |
| 161 | Unilateral Neonatal Hippocampal Lesion Alters Septal Innervation and Trophism of the Entorhinal<br>Cortex. Experimental Neurology, 1996, 141, 130-140.                                                                                        | 2.0 | 14        |
| 162 | Tachykinins protect cholinergic neurons from quinolinic acid excitotoxicity in striatal cultures.<br>Brain Research, 1996, 740, 323-328.                                                                                                      | 1.1 | 38        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of<br>Purkinje cells Proceedings of the National Academy of Sciences of the United States of America, 1995,<br>92, 9092-9096.                                  | 3.3 | 159       |
| 164 | Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins. Acta<br>Neuropathologica, 1995, 90, 504-510.                                                                                                                           | 3.9 | 82        |
| 165 | Protective Role of Nerve Growth Factor against Excitatory Amino Acid Injury during Neostriatal<br>Cholinergic Neurons Postnatal Development. Experimental Neurology, 1995, 135, 146-152.                                                                         | 2.0 | 14        |
| 166 | Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins. Acta<br>Neuropathologica, 1995, 90, 504-510.                                                                                                                           | 3.9 | 7         |
| 167 | Nerve Growth Factor and Basic Fibroblast Growth Factor Protect Cholinergic Neurons Against<br>Quinolinic Acid Excitotoxicity in Rat Neostriatum. European Journal of Neuroscience, 1994, 6, 706-711.                                                             | 1.2 | 28        |
| 168 | Control of tachykinin-evoked acetylcholine release from rat striatal slices by dopaminergic neurons.<br>Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 445-9.                                                                                        | 1.4 | 3         |
| 169 | Selective resistance of tachykinin-responsive cholinergic neurons in the quinolinic acid lesioned neostriatum. Brain Research, 1993, 603, 317-320.                                                                                                               | 1.1 | 14        |
| 170 | Nerve growth factor and its receptor are differentially modified by chronic naltrexone treatment during rat brain development. Neuroscience Letters, 1993, 149, 47-50.                                                                                           | 1.0 | 11        |
| 171 | Postnatal development of functional dopamine, opioid and tachykinin receptors that regulate<br>acetylcholine release from rat neostriatal slices. Effect of 6-hydroxydopamine lesion. International<br>Journal of Developmental Neuroscience, 1993, 11, 701-708. | 0.7 | 21        |
| 172 | Dopaminergic system mediates only δ-opiate inhibition of endogenous acetylcholine release evoked by glutamate from rat striatal slices. Neuroscience, 1991, 42, 707-714.                                                                                         | 1.1 | 17        |
| 173 | Prenatal haloperidol treatment decreases nerve growth factor receptor and mRNA in neonate rat forebrain. Neuroscience Letters, 1991, 131, 228-232.                                                                                                               | 1.0 | 16        |
| 174 | Neostriatal dopaminergic terminals prevent the GABAergic involvement in the μ- and δ-opioid inhibition of KCl-evoked endogenous acetylcholine release. Brain Research, 1991, 556, 349-352.                                                                       | 1.1 | 4         |
| 175 | Chronic treatment with scopolamine and physostigmine changes nerve growth factor (NGF) receptor density and NGF content in rat brain. Brain Research, 1991, 542, 233-240.                                                                                        | 1.1 | 26        |
| 176 | Neurokinin receptors differentially mediate endogenous acetylcholine release evoked by tachykinins in the neostriatum. Journal of Neuroscience, 1991, 11, 2332-2338.                                                                                             | 1.7 | 110       |
| 177 | Involvement of Nerve Growth Factor and Its Receptor in the Regulation of the Cholinergic Function in Aged Rats. Journal of Neurochemistry, 1991, 57, 1483-1487.                                                                                                  | 2.1 | 62        |
| 178 | GABAA and GABAB antagonists prevent the opioid inhibition of endogenous acetylcholine release evoked by glutamate from rat neostriatal slices. Neuroscience Letters, 1990, 120, 201-204.                                                                         | 1.0 | 16        |
| 179 | Excitatory amino acids release endogenous acetylcholine from rat striatal slices: Regulation by gamma-aminobutyric acid. Neurochemistry International, 1990, 17, 107-116.                                                                                        | 1.9 | 25        |
| 180 | Effect of opioids on acetylcholine release evoked by K+ or glutamic acid from rat neostriatal slices.<br>Brain Research, 1990, 523, 51-56.                                                                                                                       | 1.1 | 49        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Modulation of the endogenous acetylcholine release from rat striatal slices. Brain Research, 1985, 346, 353-356.                                                                                                       | 1.1 | 20        |
| 182 | Heterochronic mechanisms of morphological diversification and evolutionary change in the<br>neotropical salamander,Bolitoglossa occidentalis (Amphibia: Plethodontidae). Journal of<br>Morphology, 1981, 167, 249-264. | 0.6 | 229       |
| 183 | Pathogenesis of Huntington's Disease: How to Fight Excitotoxicity and Transcriptional Dysregulation.<br>, 0, , .                                                                                                       |     | 1         |