
Juan Soler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6550939/publications.pdf Version: 2024-02-01

LUAN SOLED

#	Article	IF	CITATIONS
1	Two-dimensional incompressible micropolar fluid models with singular initial data. Physica D: Nonlinear Phenomena, 2022, 430, 133069.	2.8	2
2	Hydrodynamic limit of a coupled Cucker–Smale system with strong and weak internal variable relaxation. Mathematical Models and Methods in Applied Sciences, 2021, 31, 1163-1235.	3.3	7
3	Filippov trajectories and clustering in the Kuramoto model with singular couplings. Journal of the European Mathematical Society, 2021, 23, 3193-3278.	1.4	2
4	Modeling Interactions among Migration, Growth and Pressure in Tumor Dynamics. Mathematics, 2021, 9, 1376.	2.2	2
5	Modeling invasion patterns in the glioblastoma battlefield. PLoS Computational Biology, 2021, 17, e1008632.	3.2	15
6	Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis. Mathematical Models and Methods in Applied Sciences, 2021, 31, 177-222.	3.3	14
7	Global weak solutions to the relativistic BGK equation. Communications in Partial Differential Equations, 2020, 45, 191-229.	2.2	5
8	Non uniform Rotating Vortices and Periodic Orbits for the Two-Dimensional Euler Equations. Archive for Rational Mechanics and Analysis, 2020, 238, 929-1085.	2.4	12
9	Recent results and challenges in behavioral systems. Mathematical Models and Methods in Applied Sciences, 2020, 30, 1857-1862.	3.3	2
10	Active particles methods and challenges in behavioral systems. Mathematical Models and Methods in Applied Sciences, 2020, 30, 653-658.	3.3	4
11	Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives. Mathematical Models and Methods in Applied Sciences, 2019, 29, 1901-2005.	3.3	170
12	Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations. Communications in Mathematical Physics, 2018, 360, 197-269.	2.2	8
13	Cross-diffusion and traveling waves in porous-media flux-saturated Keller–Segel models. Mathematical Models and Methods in Applied Sciences, 2018, 28, 2103-2129.	3.3	21
14	Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker–Smale models. Mathematical Models and Methods in Applied Sciences, 2017, 27, 1089-1152.	3.3	56
15	A Space-Time Wigner Function Approach to Long Time SchrĶdinger–Poisson Dynamics. SIAM Journal on Mathematical Analysis, 2017, 49, 4915-4941.	1.9	2
16	Qualitative behaviour for flux-saturated mechanisms: travelling waves, waiting time and smoothing effects. Journal of the European Mathematical Society, 2017, 19, 441-472.	1.4	15
17	Pattern formation in a flux limited reaction–diffusion equation of porous media type. Inventiones Mathematicae, 2016, 206, 57-108.	2.5	28
18	Qualitative behavior and traveling waves for flux-saturated porous media equations arising in optimal mass transportation. Nonlinear Analysis: Theory, Methods & Applications, 2016, 137, 266-290.	1.1	18

#	Article	IF	CITATIONS
19	Modeling social crowds. Physics of Life Reviews, 2016, 18, 50-52.	2.8	1
20	A Non-Markovian Phase Space Approach to Schrödinger Dynamics: The Space-Time Wigner Transform. Multiscale Modeling and Simulation, 2016, 14, 430-451.	1.6	2
21	Flux-saturated porous media equations and applications. EMS Surveys in Mathematical Sciences, 2015, 2, 131-218.	1.4	28
22	Mathematics and Biology: A round trip. Physics of Life Reviews, 2015, 12, 78-80.	2.8	1
23	Cooperation, competition, organization: The dynamics of interacting living populations. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2407-2415.	3.3	7
24	Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms. Methods in Molecular Biology, 2015, 1322, 19-33.	0.9	3
25	From a systems theory of sociology to modeling the onset and evolution of criminality. Networks and Heterogeneous Media, 2015, 10, 421-441.	1.1	47
26	ON A DISPERSIVE MODEL FOR THE UNZIPPING OF DOUBLE-STRANDED DNA MOLECULES. Mathematical Models and Methods in Applied Sciences, 2014, 24, 495-511.	3.3	7
27	On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 1869-1888.	0.9	52
28	A Non-linear Flux-Limited Model for the Transport of Morphogens. Springer Proceedings in Mathematics and Statistics, 2014, , 55-63.	0.2	0
29	ON THE DIFFICULT INTERPLAY BETWEEN LIFE, "COMPLEXITY", AND MATHEMATICAL SCIENCES. Mathematical Models and Methods in Applied Sciences, 2013, 23, 1861-1913.	3.3	116
30	On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2013, 30, 141-155.	1.4	26
31	Hyperbolic versus Parabolic Asymptotics in Kinetic Theory toward Fluid Dynamic Models. SIAM Journal on Applied Mathematics, 2013, 73, 1327-1346.	1.8	12
32	On flux-limited morphogenesis. Physics of Life Reviews, 2013, 10, 495-497.	2.8	1
33	Morphogenetic action through flux-limited spreading. Physics of Life Reviews, 2013, 10, 457-475.	2.8	51
34	EXISTENCE OF STEADY STATES FOR THE MAXWELL–SCHR×DINGER–POISSON SYSTEM: EXPLORING THE APPLICABILITY OF THE CONCENTRATION–COMPACTNESS PRINCIPLE. Mathematical Models and Methods in Applied Sciences, 2013, 23, 1915-1938.	3.3	38
35	Modeling chemotaxis from \$L^2\$–closure moments in kinetic theory of active particles. Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 847-863.	0.9	10
36	ON THE ASYMPTOTIC THEORY FROM MICROSCOPIC TO MACROSCOPIC GROWING TISSUE MODELS: AN OVERVIEW WITH PERSPECTIVES. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	3.3	80

#	Article	IF	CITATIONS
37	ON THE MATHEMATICAL THEORY OF THE DYNAMICS OF SWARMS VIEWED AS COMPLEX SYSTEMS. Mathematical Models and Methods in Applied Sciences, 2012, 22, 1140006.	3.3	125
38	On the Relativistic BGK-Boltzmann Model: Asymptotics and Hydrodynamics. Journal of Statistical Physics, 2012, 149, 284-316.	1.2	16
39	Radially Symmetric Solutions of a Tempered Diffusion Equation. A Porous Media, Flux-Limited Case. SIAM Journal on Mathematical Analysis, 2012, 44, 1019-1049.	1.9	21
40	On a nonlinear flux-limited equation arising in the transport of morphogens. Journal of Differential Equations, 2012, 252, 5763-5813.	2.2	17
41	Vanishing Viscosity Regimes and Nonstandard Shock Relations for Semiconductor Superlattices Models. SIAM Journal on Applied Mathematics, 2011, 71, 180-199.	1.8	2
42	QUALITATIVE PROPERTIES OF THE SOLUTIONS OF A NONLINEAR FLUX-LIMITED EQUATION ARISING IN THE TRANSPORT OF MORPHOGENS. Mathematical Models and Methods in Applied Sciences, 2011, 21, 893-937.	3.3	32
43	Complexity and mathematical tools toward the modelling of multicellular growing systems. Mathematical and Computer Modelling, 2010, 51, 441-451.	2.0	39
44	Virial inequalities for steady states in relativistic galactic dynamics. Nonlinearity, 2010, 23, 1851-1871.	1.4	2
45	MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS. Mathematical Models and Methods in Applied Sciences, 2010, 20, 1179-1207.	3.3	143
46	A Coupled Boltzmann and Navier–Stokes Fragmentation Model Induced by a Fluid-Particle-Spring Interaction. Multiscale Modeling and Simulation, 2010, 8, 1244-1268.	1.6	3
47	Dispersive behavior in galactic dynamics. Discrete and Continuous Dynamical Systems - Series B, 2010, 14, 1-16.	0.9	4
48	Asymptotic Behavior and Orbital Stability of Galactic Dynamics in Relativistic Scalar Gravity. Archive for Rational Mechanics and Analysis, 2009, 194, 743-773.	2.4	6
49	On a unified theory of cold dark matter halos based on collisionless Boltzmann–Poisson polytropes. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2321-2330.	2.6	9
50	From the mathematical kinetic theory for active particles on the derivation of hyperbolic macroscopic tissue models. Mathematical and Computer Modelling, 2009, 49, 2083-2093.	2.0	8
51	MULTICELLULAR BIOLOGICAL GROWING SYSTEMS: HYPERBOLIC LIMITS TOWARDS MACROSCOPIC DESCRIPTION. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1675-1692.	3.3	89
52	Long Time Behaviour to the Schrödinger–Poisson–Xα Systems. Lecture Notes in Physics, 2006, , 217-232.	0.7	4
53	Quantum Transport and Boltzmann Operators. Journal of Statistical Physics, 2006, 122, 417-436.	1.2	7
54	Orbital stability for polytropic galaxies. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2006, 23, 781-802.	1.4	21

#	Article	IF	CITATIONS
55	EXACT SOLUTIONS AND DYNAMICS OF GLOBALLY COUPLED OSCILLATORS. Mathematical Models and Methods in Applied Sciences, 2006, 16, 1919-1959.	3.3	3
56	A KINETIC DESCRIPTION OF PARTICLE FRAGMENTATION. Mathematical Models and Methods in Applied Sciences, 2006, 16, 933-948.	3.3	5
57	Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system. Journal of Differential Equations, 2005, 213, 418-442.	2.2	50
58	An analysis of quantum Fokker–Planck models: A Wigner function approach. Revista Matematica Iberoamericana, 2004, 20, 771-814.	0.9	39
59	Long-Time Dynamics of the Schrödinger–Poisson–Slater System. Journal of Statistical Physics, 2004, 114, 179-204.	1.2	94
60	Asymptotic Behaviour for the Vlasov-Poisson System in the Stellar-Dynamics Case. Archive for Rational Mechanics and Analysis, 2004, 171, 301-327.	2.4	27
61	Asymptotic decay estimates for the repulsive Schrödinger–Poisson system. Mathematical Methods in the Applied Sciences, 2004, 27, 371-380.	2.3	10
62	Low-Field Limit for a Nonlinear Discrete Drift-Diffusion Model Arising in Semiconductor Superlattices Theory. SIAM Journal on Applied Mathematics, 2004, 64, 1526-1549.	1.8	16
63	On an Exchange Interaction Model for Quantum Transport: The Schrödinger–Poisson–Slater System. Mathematical Models and Methods in Applied Sciences, 2003, 13, 1397-1412.	3.3	45
64	Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation times in semiconductor superlattices. Physical Review B, 2002, 65, .	3.2	12
65	ABOUT UNIQUENESS OF WEAK SOLUTIONS TO FIRST ORDER QUASI-LINEAR EQUATIONS. Mathematical Models and Methods in Applied Sciences, 2002, 12, 1599-1615.	3.3	4
66	Time rescaling and asymptotic behavior of some fourth-order degenerate diffusion equations. Computers and Mathematics With Applications, 2002, 43, 721-736.	2.7	18
67	High-Field Limit for the Vlasov-Poisson-Fokker-Planck System. Archive for Rational Mechanics and Analysis, 2001, 158, 29-59.	2.4	85
68	Long–time asymptotics for semiconductor crystals. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47, 5861-5872.	1.1	0
69	Title is missing!. Journal of Statistical Physics, 2001, 103, 1069-1105.	1.2	27
70	HIGH-FIELD LIMIT OF THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: A COMPARISON OF DIFFERENT PERTURBATION METHODS. Mathematical Models and Methods in Applied Sciences, 2001, 11, 1457-1468.	3.3	45
71	Discrete Schrödinger-Poisson systems preserving energy and mass. Applied Mathematics Letters, 2000, 13, 27-32.	2.7	8
72	On the Evolution of an Angle in a Vortex Patch. Journal of Nonlinear Science, 2000, 10, 23-47.	2.1	9

#	Article	IF	CITATIONS
73	On the time evolution of the mean-field polaron. Journal of Mathematical Physics, 2000, 41, 4293-4312.	1.1	8
74	PARABOLIC LIMIT AND STABILITY OF THE VLASOV–FOKKER–PLANCK SYSTEM. Mathematical Models and Methods in Applied Sciences, 2000, 10, 1027-1045.	3.3	71
75	ASYMPTOTIC BEHAVIOR TO THE 3-D SCHR×DINGER/HARTREE–POISSON AND WIGNER–POISSON SYSTEMS Mathematical Models and Methods in Applied Sciences, 2000, 10, 923-943.	· 3.3	24
76	Asymptotic behaviour for the 3-D SchrĶdinger-Poisson System in the attractive case with positive energy. Applied Mathematics Letters, 1999, 12, 1-6.	2.7	35
77	On the evolution of a singular vortex patch in a two-dimensional incompressible fluid flow. Computer Physics Communications, 1999, 121-122, 244-250.	7.5	0
78	On functional solutions for the three dimensional kinetic equations of Vlasov-type with bounded measures as initial data. Nonlinear Analysis: Theory, Methods & Applications, 1998, 32, 235-259.	1.1	1
79	Exactly Solvable Phase Oscillator Models with Synchronization Dynamics. Physical Review Letters, 1998, 81, 3643-3646.	7.8	30
80	Asymptotic Behavior of an Initial-Boundary Value Problem for the Vlasov–Poisson–Fokker–Planck System. SIAM Journal on Applied Mathematics, 1997, 57, 1343-1372.	1.8	45
81	Functional solutions for the Vlasov-Poisson system. Applied Mathematics Letters, 1997, 10, 45-50.	2.7	3
82	Scaling limits in the 3-D SchrĶdinger-Poisson system. Applied Mathematics Letters, 1997, 10, 61-65.	2.7	6
83	Asymptotic behaviour for the Vlasov-Poisson-Foker-Planck system. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30, 5217-5228.	1.1	6
84	On the Vlasov–Poisson–Fokker–Planck Equations with Measures in Morrey Spaces as Initial Data. Journal of Mathematical Analysis and Applications, 1997, 207, 475-495.	1.0	26
85	Asymptotic Behaviour and Self-Similarity for the Three Dimensional Vlasov–Poisson–Fokker–Planck System. Journal of Functional Analysis, 1996, 141, 99-132.	1.4	46
86	H-theorem for electrostatic or self-gravitating Vlasov-Poisson-Fokker-Planck systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 212, 55-59.	2.1	12
87	On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data inLp spaces. Mathematical Methods in the Applied Sciences, 1995, 18, 825-839.	2.3	51
88	Lâ^ž Stability for Weak Solutions of the Navier-Stokes Equations in R3 with Singular Initial Data in Morrey Spaces. Journal of Mathematical Analysis and Applications, 1994, 187, 513-525.	1.0	2
89	Convergence of the contour dynamics method. Numerical Methods for Partial Differential Equations, 1991, 7, 261-276.	3.6	1
90	Vortex Filament Method. IMA Journal of Numerical Analysis, 1990, 10, 75-102.	2.9	1

#	Article	IF	CITATIONS
91	Three-dimensional Navier-Stokes equations for singular filament initial data. Journal of Differential Equations, 1988, 74, 234-253.	2.2	12
92	On cubature with a minimal number of lines. Journal of Computational and Applied Mathematics, 1987, 19, 223-230.	2.0	1