Dmitry M Kolpashchikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6550486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Split light up aptamers as a probing tool for nucleic acids. Methods, 2022, 197, 82-88.	1.9	4
2	DNA nanomachine for visual detection of structured RNA and double stranded DNA. Chemical Communications, 2022, 58, 5395-5398.	2.2	9
3	Binary (Split) Lightâ€up Aptameric Sensors. Angewandte Chemie, 2021, 133, 5040-5051.	1.6	3
4	Binary (Split) Lightâ€up Aptameric Sensors. Angewandte Chemie - International Edition, 2021, 60, 4988-4999.	7.2	35
5	Manufacturing Reusable NAND Logic Gates and Their Initial Circuits for DNA Nanoprocessors. Chemistry - A European Journal, 2021, 27, 2421-2426.	1.7	6
6	RNA leaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker. ChemBioChem, 2021, 22, 1750-1754.	1.3	5
7	Deoxyribozymeâ€Based DNA Machines for Cancer Therapy. ChemBioChem, 2020, 21, 607-611.	1.3	16
8	Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function. Angewandte Chemie - International Edition, 2020, 59, 21190-21194.	7.2	15
9	Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function. Angewandte Chemie, 2020, 132, 21376-21380.	1.6	1
10	Towards Point of Care Diagnostics: Visual Detection of Meningitis Pathogens Directly from Cerebrospinal Fluid. ChemistrySelect, 2020, 5, 14572-14577.	0.7	5
11	Click Chemistry-Based Two-Component System for Efficient Inhibition of Human Immunodeficiency Virus (HIV) Reverse Transcriptase (RT). ACS Omega, 2020, 5, 4167-4171.	1.6	1
12	MVF Sensor Enables Analysis of Nucleic Acids with Stable Secondary Structures. Electroanalysis, 2020, 32, 835-841.	1.5	0
13	Bifunctional RNAâ€Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chemistry - A European Journal, 2020, 26, 3489-3493.	1.7	8
14	A DNA minimachine for selective and sensitive detection of DNA. Analyst, The, 2019, 144, 416-420.	1.7	12
15	Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angewandte Chemie, 2019, 131, 4702-4706.	1.6	13
16	Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angewandte Chemie - International Edition, 2019, 58, 4654-4658.	7.2	34
17	Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons. Analytical Chemistry, 2019, 91, 2667-2671.	3.2	31
18	Evolution of Hybridization Probes to DNA Machines and Robots. Accounts of Chemical Research, 2019, 52, 1949-1956.	7.6	40

#	Article	IF	CITATIONS
19	Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. Magnetochemistry, 2019, 5, 24.	1.0	24
20	Rapid detection of different DNA analytes using a single electrochemical sensor. Sensors and Actuators B: Chemical, 2019, 293, 11-15.	4.0	17
21	Multi-labeled electrochemical sensor for cost-efficient detection of single nucleotide substitutions in folded nucleic acids. Sensors and Actuators B: Chemical, 2019, 287, 569-575.	4.0	14
22	A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands. Biosensors and Bioelectronics, 2018, 109, 35-42.	5.3	17
23	Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. Nanoscale, 2018, 10, 1356-1365.	2.8	24
24	The owl sensor: a â€~fragile' DNA nanostructure for the analysis of single nucleotide variations. Nanoscale, 2018, 10, 10116-10122.	2.8	7
25	FaptaSyme: A Strategy for Converting a Monomer/Oligomerâ€Nonselective Aptameric Sensor into an Oligomerâ€6elective One. ChemBioChem, 2018, 19, 1123-1126.	1.3	4
26	Towards sustainable diagnostics: replacing unstable H ₂ O ₂ by photoactive TiO ₂ in testing systems for visible and tangible diagnostics for use by blind people. RSC Advances, 2018, 8, 37735-37739.	1.7	6
27	Selfâ€Assembling Molecular Logic Gates Based on DNA Crossover Tiles. ChemPhysChem, 2017, 18, 1730-1734.	1.0	6
28	Multiplex detection of extensively drug resistant tuberculosis using binary deoxyribozyme sensors. Biosensors and Bioelectronics, 2017, 94, 176-183.	5.3	29
29	A universal split spinach aptamer (USSA) for nucleic acid analysis and DNA computation. Chemical Communications, 2017, 53, 4977-4980.	2.2	36
30	A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences. Electroanalysis, 2017, 29, 873-879.	1.5	13
31	Liquid-to-gel transition for visual and tactile detection of biological analytes. Chemical Communications, 2017, 53, 12622-12625.	2.2	12
32	A mutation-resistant deoxyribozyme OR gate for highly selective detection of viral nucleic acids. Chemical Communications, 2017, 53, 10592-10595.	2.2	15
33	Divide and Control: Comparison of Split and Switch Hybridization Sensors. ChemistrySelect, 2017, 2, 5427-5431.	0.7	25
34	Magnetic Field-Activated Sensing of mRNA in Living Cells. Journal of the American Chemical Society, 2017, 139, 12117-12120.	6.6	44
35	DNA Computing Systems Activated by Electrochemicallyâ€triggered DNA Release from a Polymerâ€brushâ€modified Electrode Array. Electroanalysis, 2017, 29, 398-408.	1.5	22
36	Nucleic Acid Analysis Using Multifunctional Hybridization Sensors. Proceedings (mdpi), 2017, 1, .	0.2	0

DMITRY M KOLPASHCHIKOV

#	Article	IF	CITATIONS
37	Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. ChemBioChem, 2016, 17, 1589-1592.	1.3	38
38	Bioelectronic Interface Connecting Reversible Logic Gates Based on Enzyme and DNA Reactions. ChemPhysChem, 2016, 17, 2247-2255.	1.0	35
39	Nonequilibrium Hybridization Enables Discrimination of a Point Mutation within 5–40 °C. Journal of the American Chemical Society, 2016, 138, 13465-13468.	6.6	31
40	DNA Antenna Tileâ€Associated Deoxyribozyme Sensor with Improved Sensitivity. ChemBioChem, 2016, 17, 2038-2041.	1.3	18
41	Towards a DNA Nanoprocessor: Reusable Tileâ€integrated DNA Circuits. Angewandte Chemie, 2016, 128, 10400-10403.	1.6	16
42	Towards a DNA Nanoprocessor: Reusable Tileâ€Integrated DNA Circuits. Angewandte Chemie - International Edition, 2016, 55, 10244-10247.	7.2	41
43	Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angewandte Chemie - International Edition, 2015, 54, 6562-6566.	7.2	106
44	Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors. Rna, 2015, 21, 1834-1843.	1.6	15
45	Nuclease-containing media for resettable operation of DNA logic gates. Chemical Communications, 2015, 51, 1429-1431.	2.2	25
46	Divide and control: split design of multi-input DNA logic gates. Chemical Communications, 2015, 51, 870-872.	2.2	28
47	Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nature Chemistry, 2014, 6, 1003-1008.	6.6	118
48	A Differential Fluorescent Receptor for Nucleic Acid Analysis. ChemBioChem, 2014, 15, 228-231.	1.3	11
49	Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chemical Society Reviews, 2014, 43, 6405-6438.	18.7	192
50	Deoxyribozyme Cascade for Visual Detection of Bacterial RNA. ChemBioChem, 2013, 14, 2087-2090.	1.3	35
51	Detection of SNP-Containing Human DNA Sequences Using a Split Sensor with a Universal Molecular Beacon Reporter. Methods in Molecular Biology, 2013, 1039, 69-80.	0.4	2
52	Four-Way Junction Formation Promoting Ultrasensitive Electrochemical Detection of MicroRNA. Analytical Chemistry, 2013, 85, 9422-9427.	3.2	76
53	Two-component covalent inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 1988-1991.	1.4	3
54	Detection of bacterial 16S rRNA using a molecular beacon-based X sensor. Biosensors and Bioelectronics, 2013, 41, 386-390.	5.3	44

DMITRY M KOLPASHCHIKOV

#	Article	IF	CITATIONS
55	Folding of 16S rRNA in a Signalâ€Producing Structure for the Detection of Bacteria. Angewandte Chemie - International Edition, 2013, 52, 10586-10588.	7.2	39
56	Operating Cooperatively (OC) Sensor for Highly Specific Recognition of Nucleic Acids. PLoS ONE, 2013, 8, e55919.	1.1	10
57	SNP Analysis Using a Molecular Beacon-Based Operating Cooperatively (OC) Sensor. Methods in Molecular Biology, 2013, 1039, 81-86.	0.4	2
58	An Elegant Biosensor Molecular Beacon Probe: Challenges and Recent Solutions. Scientifica, 2012, 2012, 1-17.	0.6	53
59	Molecular Logic Gates for DNA Analysis: Detection of Rifampin Resistance in <i>M.â€tuberculosis</i> DNA. Angewandte Chemie - International Edition, 2012, 51, 9075-9077.	7.2	48
60	Connectable DNA Logic Gates: OR and XOR Logics. Chemistry - an Asian Journal, 2012, 7, 534-540.	1.7	31
61	Molecularâ€Beaconâ€Based Tricomponent Probe for SNP Analysis in Folded Nucleic Acids. Chemistry - A European Journal, 2011, 17, 13052-13058.	1.7	39
62	DNA Nanotechnology for Nucleic Acid Analysis: DX Motifâ€Based Sensor. ChemBioChem, 2011, 12, 2564-2567.	1.3	29
63	RNA leaving Deoxyribozyme Sensor for Nucleic Acid Analysis: The Limit of Detection. ChemBioChem, 2010, 11, 811-817.	1.3	44
64	A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences. ChemBioChem, 2010, 11, 1762-1768.	1.3	57
65	Molecular Logic Gates Connected through DNA Fourâ€Way Junctions. Angewandte Chemie - International Edition, 2010, 49, 4459-4462.	7.2	70
66	Realâ€Time SNP Analysis in Secondaryâ€Structureâ€Folded Nucleic Acids. Angewandte Chemie - International Edition, 2010, 49, 8950-8953.	7.2	53
67	Nucleic Acid Detection using MNAzymes. Chemistry and Biology, 2010, 17, 104-106.	6.2	47
68	Binary Probes for Nucleic Acid Analysis. Chemical Reviews, 2010, 110, 4709-4723.	23.0	280
69	Enzyme-assisted binary probe for sensitive detection of RNA and DNA. Chemical Communications, 2010, 46, 8761.	2.2	50
70	Tripleâ€ S tem DNA Probe: A New Conformationally Constrained Probe for SNP Typing. ChemBioChem, 2009, 10, 1443-1445.	1.3	9
71	Split DNA Enzyme for Visual Single Nucleotide Polymorphism Typing. Journal of the American Chemical Society, 2008, 130, 2934-2935.	6.6	190
72	A Binary Deoxyribozyme for Nucleic Acid Analysis. ChemBioChem, 2007, 8, 2039-2042.	1.3	105

#	Article	IF	CITATIONS
73	A Binary DNA Probe for Highly Specific Nucleic Acid Recognition. Journal of the American Chemical Society, 2006, 128, 10625-10628.	6.6	116
74	Boolean Control of Aptamer Binding States. Journal of the American Chemical Society, 2005, 127, 11348-11351.	6.6	91
75	Deoxyribozyme-Based Ligase Logic Gates and Their Initial Circuits. Journal of the American Chemical Society, 2005, 127, 6914-6915.	6.6	164
76	Binary Malachite Green Aptamer for Fluorescent Detection of Nucleic Acids. Journal of the American Chemical Society, 2005, 127, 12442-12443.	6.6	185
77	Modular Aptameric Sensors. Journal of the American Chemical Society, 2004, 126, 9266-9270.	6.6	301
78	Structureâ^'Function Relationship of the Influenza Virus RNA Polymerase:  Primer-Binding Site on the PB1 Subunit. Biochemistry, 2004, 43, 5882-5887.	1.2	14
79	Superselective Labelling of Proteins: Approaches and Techniques. Journal of Biomolecular Structure and Dynamics, 2003, 21, 55-64.	2.0	7
80	Binary system for selective photoaffinity labeling of base excision repair DNA polymerases. Nucleic Acids Research, 2002, 30, 73e-73.	6.5	17
81	Highly efficient labeling of DNA polymerases by a binary system of photoaffinity reagents. Biochemistry (Moscow), 2002, 67, 807-814.	0.7	2
82	A Binary System of Photoreagents for High-Efficiency Labeling of DNA Polymerases. Biochemical and Biophysical Research Communications, 2001, 287, 530-535.	1.0	8
83	Localization of the large subunit of replication factor C near the 5? end of DNA primers. Journal of Molecular Recognition, 2001, 14, 239-244.	1.1	9
84	Affinity labeling of flap-endonuclease FEN-1 by photoreactive DNAs. Biochemistry (Moscow), 2001, 66, 733-739.	0.7	2
85	Investigation of the dNTP-binding site of HIV-1 reverse transcriptase using photoreactive analogs of dNTP. Biochemistry (Moscow), 2001, 66, 999-1007.	0.7	6
86	Polarity of human replication protein A binding to DNA. Nucleic Acids Research, 2001, 29, 373-379.	6.5	89
87	Synthesis of Base-Substituted dUTP Analogues Carrying a Photoreactive Group and Their Application to Study Human Replication Protein A. Bioconjugate Chemistry, 2000, 11, 445-451.	1.8	21
88	RPA subunit arrangement near the 3'-end of the primer is modulated by the length of the template strand and cooperative protein interactions. Nucleic Acids Research, 1999, 27, 4235-4240.	6.5	62
89	5-[3-(E)-(4-Azido-2,3,5,6-tetrafluorobenzamido)propenyl-1]-2â€~-deoxy- uridine-5â€~-triphosphate Substitutes for Thymidine-5â€~-triphosphate in the Polymerase Chain Reaction. Bioconjugate Chemistry, 1999, 10, 529-537.	1.8	21
90	Synthesis of New Photocross-Linking 5-C-Base-Substituted UTP Analogs and Their Application in Highly Selective Affinity Labelling of the Tick-Borne Encephalitis Virus RNA Replicase Proteins. Nucleosides & Nucleotides, 1999, 18, 1513-1514.	0.5	1

#	Article	IF	CITATIONS
91	Sensitized photomodification of mammalian DNA polymerase \hat{l}^2 . A new approach for highly selective affinity labeling of polymerases. FEBS Letters, 1999, 448, 141-144.	1.3	23
92	Interaction of the p70 subunit of RPA with a DNA template directs p32 to the 3′-end of nascent DNA. FEBS Letters, 1999, 450, 131-134.	1.3	33
93	Alternative conformations of human replication protein A are detected by crosslinks with primers carrying a photoreactive group at the 3′-end. FEBS Letters, 1998, 441, 186-190.	1.3	28