Thomas Kruehler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6550273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A γ-ray burst at a redshift of z â‰^ 8.2. Nature, 2009, 461, 1254-1257.	13.7	535
2	A PHOTOMETRIC REDSHIFT OF <i>z</i> â^1⁄4 9.4 FOR GRB 090429B. Astrophysical Journal, 2011, 736, 7.	1.6	352
3	GROND—a 7-Channel Imager. Publications of the Astronomical Society of the Pacific, 2008, 120, 405-424.	1.0	325
4	A very luminous magnetar-powered supernova associated with an ultra-long Î ³ -ray burst. Nature, 2015, 523, 189-192.	13.7	233
5	A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS. Astrophysical Journal, 2014, 781, 13.	1.6	207
6	The nature of "dark―gamma-ray bursts. Astronomy and Astrophysics, 2011, 526, A30.	2.1	187
7	The 2175 à Dust Feature in a Gammaâ€Ray Burst Afterglow at Redshift 2.45. Astrophysical Journal, 2008, 685, 376-383.	1.6	175
8	GRB 080913 AT REDSHIFT 6.7. Astrophysical Journal, 2009, 693, 1610-1620.	1.6	175
9	Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 449, 917-932.	1.6	174
10	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. Astrophysical Journal, 2013, 778, 128.	1.6	160
11	THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS. Astrophysical Journal, 2012, 756, 187.	1.6	156
12	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1, .	4.2	154
13	GRB hosts through cosmic time. Astronomy and Astrophysics, 2015, 581, A125.	2.1	149
14	The SEDs and host galaxies of the dustiest GRB afterglows. Astronomy and Astrophysics, 2011, 534, A108.	2.1	142
15	THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD. Astrophysical Journal, 2016, 817, 8.	1.6	135
16	THE SWIFT GAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION. Astrophysical Journal, 2016, 817, 7.	1.6	103
17	DISCOVERY OF THE BROAD-LINED TYPE IC SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A. Astrophysical Journal, 2013, 776, 98.	1.6	99
18	LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE. Astrophysical Journal Letters, 2015, 807, L18.	3.0	98

#	Article	IF	CITATIONS
19	Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the <i>Swift</i> /BAT6 complete sample of LGRBs. Astronomy and Astrophysics, 2015, 581, A102.	2.1	95
20	The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C. Astronomy and Astrophysics, 2009, 498, 89-94.	2.1	92
21	Characterizing the environments of supernovae with MUSE. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4087-4099.	1.6	91
22	Supersolar metal abundances in two galaxies at z â^¼ 3.57 revealed by the GRB 090323 afterglow spectrumã~. Monthly Notices of the Royal Astronomical Society, 2012, 420, 627-636.	ʻʻʻ i .6	88
23	GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. Astronomy and Astrophysics, 2014, 566, A102.	2.1	87
24	Dust extinctions for an unbiased sample of gamma-ray burst afterglows. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1231-1244.	1.6	86
25	The dust extinction curves of gamma-ray burst host galaxies. Astronomy and Astrophysics, 2012, 537, A15.	2.1	78
26	A STRONG OPTICAL FLARE BEFORE THE RISING AFTERGLOW OF GRB 080129. Astrophysical Journal, 2009, 693, 1912-1919.	1.6	75
27	MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A: GeV EMISSION FROM ONSET TO AFTERGLOW. Astrophysical Journal, 2013, 763, 71.	1.6	75
28	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT <i>z</i> ≲ 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 755, 85.	1.6	74
29	Molecular hydrogen in the damped Lyman <i>α</i> system towards GRB 120815A at <i>z</i> = 2.36. Astronomy and Astrophysics, 2013, 557, A18.	2.1	72
30	The circumburst density profile around GRB progenitors: aÂstatistical study. Astronomy and Astrophysics, 2011, 526, A23.	2.1	71
31	Spectroscopy of the short-hard GRB 130603B. Astronomy and Astrophysics, 2014, 563, A62.	2.1	71
32	Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at zâ^¼ 5. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2473-2487.	1.6	70
33	On the two high-metallicity DLAs at zÂ=Â2.412 and 2.583 towards QÂ0918+1636ã~ Monthly Notices of the Royal Astronomical Society, 2013, 436, 361-370.	1.6	70
34	BL Lacertae objects beyond redshift 1.3 – UV-to-NIR photometry and photometric redshift for <i>Fermi</i> /LAT blazars. Astronomy and Astrophysics, 2012, 538, A26.	2.1	69
35	MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063. Astronomy and Astrophysics, 2015, 574, A11.	2.1	69
36	GRBÂ100219A with X-shooter – abundances in a galaxy at z =4.7. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3590-3606.	1.6	66

#	Article	IF	CITATIONS
37	VLT/X-Shooter spectroscopy of the afterglow of the <i>Swift</i> GRB 130606A. Astronomy and Astrophysics, 2015, 580, A139.	2.1	66
38	THE METALLICITY AND DUST CONTENT OF A REDSHIFT 5 GAMMA-RAY BURST HOST GALAXY. Astrophysical Journal, 2014, 785, 150.	1.6	64
39	A trio of gamma-ray burst supernovae:. Astronomy and Astrophysics, 2014, 568, A19.	2.1	62
40	THE PROPERTIES OF THE 2175 Ã EXTINCTION FEATURE DISCOVERED IN GRB AFTERGLOWS. Astrophysical Journal, 2012, 753, 82.	1.6	61
41	CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < <i>z</i> < 2.5. Astrophysical Journal, 2015, 801, 102.	1.6	61
42	A deep search for the host galaxies of gamma-ray bursts with no detected optical afterglow. Astronomy and Astrophysics, 2012, 545, A77.	2.1	60
43	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT â ⁻¹ /46. Astrophysical Journal, 2015, 808, 73.	1.6	60
44	The warm, the excited, and the molecular gas: GRBÂ121024A shining through its star-forming galaxyâ~ Monthly Notices of the Royal Astronomical Society, 2015, 451, 167-183.	1.6	59
45	CORRELATED OPTICAL AND X-RAY FLARES IN THE AFTERGLOW OF XRF 071031. Astrophysical Journal, 2009, 697, 758-768.	1.6	57
46	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. V. VLT/X-SHOOTER EMISSION-LINE REDSHIFTS FOR <i>SWIFT</i> GRBs AT <i>z</i> â^¼ 2. Astrophysical Journal, 2012, 758, 46.	1.6	57
47	Hot gas around SN 1998bw: Inferring the progenitor from its environment. Astronomy and Astrophysics, 2017, 602, A85.	2.1	56
48	The two-component jet of GRB 080413B. Astronomy and Astrophysics, 2011, 526, A113.	2.1	53
49	A VERY METAL-POOR DAMPED LYMAN-α SYSTEM REVEALED THROUGH THE MOST ENERGETIC GRB 090926A. Astrophysical Journal, 2010, 720, 862-871.	1.6	52
50	The missing gas problem in GRB host galaxies: evidence for a highly ionised component. Astronomy and Astrophysics, 2011, 525, A113.	2.1	52
51	GRB 090426: Discovery of a jet break in a short burst afterglow. Astronomy and Astrophysics, 2011, 531, L6.	2.1	52
52	Detailed optical and near-infrared polarimetry, spectroscopy and broad-band photometry of the afterglow of GRB 091018: polarization evolution. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2-22.	1.6	52
53	GRB 091127: The cooling break race on magnetic fuel. Astronomy and Astrophysics, 2011, 535, A57.	2.1	51
54	The fast evolution of SN 2010bh associated with XRF 100316D. Astronomy and Astrophysics, 2012, 539, A76.	2.1	51

#	Article	IF	CITATIONS
55	GAMMA-RAY BURSTS TRACE UV METRICS OF STAR FORMATION OVER 3 < <i>z</i> < 5. Astrophysical Journal, 2015, 809, 76.	1.6	50
56	On the nature of the extremely fast optical rebrightening of the afterglow of GRBÂ081029. Astronomy and Astrophysics, 2011, 531, A39.	2.1	49
57	Photometric redshifts for gamma-ray burst afterglows from GROND and <i>Swift</i> /UVOT. Astronomy and Astrophysics, 2011, 526, A153.	2.1	47
58	The X-shooter GRB afterglow legacy sample (XS-GRB). Astronomy and Astrophysics, 2019, 623, A92.	2.1	47
59	The low-extinction afterglow in the solar-metallicity host galaxy of <i>γ</i> -ray burst 110918A. Astronomy and Astrophysics, 2013, 556, A23.	2.1	45
60	Rise and fall of the X-ray flash 080330: an off-axis jet?. Astronomy and Astrophysics, 2009, 499, 439-453.	2.1	44
61	The bright optical/NIR afterglow of the faint GRBÂ080710 – evidence of a jet viewed off-axis. Astronomy and Astrophysics, 2009, 508, 593-598.	2.1	44
62	The Swift/ <i>Fermi</i> GRB 080928 from 1 eV to 150ÂkeV. Astronomy and Astrophysics, 2011, 529, A142.	2.1	44
63	HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal, 2013, 768, 23.	1.6	44
64	<i>Fermi</i> /GBM observations of the ultra-long GRBÂ091024. Astronomy and Astrophysics, 2011, 528, A15.	2.1	43
65	Multi-color observations of short GRB afterglows: 20 events observed between 2007 and 2010. Astronomy and Astrophysics, 2012, 548, A101.	2.1	43
66	The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5380-5408.	1.6	43
67	The metal-enriched host of an energetic <i>l³</i> -ray burst at <i>z</i> Ââ‰^ 1.6. Astronomy and Astrophysics, 2012, 546, A8.	2.1	40
68	MUSE REVEALS A RECENT MERGER IN THE POST-STARBURST HOST GALAXY OF THE TDE ASASSN-14li. Astrophysical Journal Letters, 2016, 830, L32.	3.0	40
69	A quasar reddened by a sub-parsec-sized, metal-rich and dusty cloud in a damped LymanÂα absorber at <i>z</i> = 2.13. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2698-2711.	1.6	40
70	Investigating the diversity of supernovae type lax: a MUSE and NOT spectroscopic study of their environments. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1359-1387.	1.6	40
71	The mysterious optical afterglow spectrum of GRB 140506A at <i>z</i> = 0.889. Astronomy and Astrophysics, 2014, 572, A12.	2.1	39
72	The unusual afterglow of the gamma-ray burst 100621A. Astronomy and Astrophysics, 2013, 560, A70.	2.1	34

#	Article	IF	CITATIONS
73	OGLE2-TR-L9b: an exoplanet transiting a rapidly rotating F3 star. Astronomy and Astrophysics, 2009, 497, 545-550.	2.1	34
74	The chemical enrichment of long gamma-ray bursts nurseries up to <i>z = 2</i> . Astronomy and Astrophysics, 2017, 599, A120.	2.1	33
75	Highly luminous supernovae associated with gamma-ray bursts. Astronomy and Astrophysics, 2019, 624, A143.	2.1	33
76	Afterglow rebrightenings as a signature of a long-lasting central engine activity?. Astronomy and Astrophysics, 2014, 562, A29.	2.1	30
77	Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter. Astronomy and Astrophysics, 2015, 579, A74.	2.1	30
78	Super-solar metallicity at the position of the ultra-long GRB 130925A. Astronomy and Astrophysics, 2015, 579, A126.	2.1	29
79	A Revised Host Galaxy Association for GRBÂ020819B: A High-Redshift Dusty Starburst, Not a Low-Redshift Gas-Poor Spiral. Monthly Notices of the Royal Astronomical Society: Letters, 2016, , .	1.2	29
80	GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological γ-ray burst?. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1535-1552.	1.6	28
81	GROND coverage of the main peak of gamma-ray burst 130925A. Astronomy and Astrophysics, 2014, 568, A75.	2.1	27
82	GRB 120711A: an intense INTEGRAL burst with long-lasting soft <i>γ</i> -ray emission and a powerful optical flash. Astronomy and Astrophysics, 2014, 567, A84.	2.1	27
83	The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. Nature Astronomy, 2018, 2, 574-579.	4.2	26
84	GRB 081008: FROM BURST TO AFTERGLOW AND THE TRANSITION PHASE IN BETWEEN. Astrophysical Journal, 2010, 711, 870-880.	1.6	25
85	The late-time afterglow of the extremely energetic short burst GRB 090510 revisited. Astronomy and Astrophysics, 2012, 538, L7.	2.1	25
86	The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. Astronomy and Astrophysics, 2018, 617, A122.	2.1	25
87	The supermassive black hole coincident with the luminous transient ASASSN-15lh. Astronomy and Astrophysics, 2018, 610, A14.	2.1	24
88	<i>Herschel</i> observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium. Astronomy and Astrophysics, 2014, 570, A52.	2.1	24
89	The Properties of CRB 120923A at a Spectroscopic Redshift of zÂâ‰^Â7.8. Astrophysical Journal, 2018, 865, 107.	1.6	23
90	The environment of the SN-less GRB 111005A at <i>z</i> = 0.0133. Astronomy and Astrophysics, 2018, 615, A136.	2.1	22

#	Article	IF	CITATIONS
91	Galaxy counterparts of intervening high- <i>z</i> sub-DLAs/DLAs and Mg ii absorbers towards gamma-ray bursts. Astronomy and Astrophysics, 2012, 546, A20.	2.1	21
92	Dust reddening and extinction curves toward gamma-ray bursts at <i>z</i> > 4. Astronomy and Astrophysics, 2018, 609, A62.	2.1	20
93	Four GRB supernovae at redshifts between 0.4 and 0.8. Astronomy and Astrophysics, 2019, 622, A138.	2.1	20
94	Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603. Astronomy and Astrophysics, 2016, 593, A78.	2.1	19
95	Testing gamma-ray burst models with the afterglow of GRB 090102. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	17
96	GRB 091029: at the limit of the fireball scenario. Astronomy and Astrophysics, 2012, 546, A101.	2.1	17
97	Highly extinguished host galaxy of the dark GRB 020819. Astronomy and Astrophysics, 2010, 515, L2.	2.1	16
98	Prompt emission of GRB 121217A from gamma-rays to the near-infrared. Astronomy and Astrophysics, 2014, 562, A100.	2.1	16
99	GRB host galaxies with VLT/X-Shooter: properties at 0.8Â<Â <i>z</i> Â<Â1.3. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3293-3303.	1.6	16
100	Gas inflow and outflow in an interacting high-redshift galaxy. Astronomy and Astrophysics, 2017, 607, A107.	2.1	16
101	First Results of GROND. AIP Conference Proceedings, 2008, , .	0.3	15
102	A photometric redshift of <i>z</i> Â=Â1.8\$^{sf{+0.4}}_{sf{-0.3}}\$ for the <i>AGILE</i> GRB 080514B. Astronomy and Astrophysics, 2008, 491, L29-L32.	2.1	14
103	PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe. Astronomy and Astrophysics, 2010, 509, A69.	2.1	14
104	First simultaneous optical/near-infrared imaging of an X-ray selected, high-redshift cluster of galaxies with GROND. Astronomy and Astrophysics, 2012, 540, A45.	2.1	14
105	VLT/X-SHOOTER NEAR-INFRARED SPECTROSCOPY AND <i>HST</i> IMAGING OF GRAVITATIONALLY LENSED <i>z</i> â ¹ /4 2 COMPACT QUIESCENT GALAXIES. Astrophysical Journal, 2013, 777, 87.	1.6	14
106	Multiwavelength analysis of three supernovae associated with gamma-ray bursts observed by GROND. Astronomy and Astrophysics, 2015, 577, A44.	2.1	14
107	The luminous host galaxy, faint supernova and rapid afterglow rebrightening of GRB 100418A. Astronomy and Astrophysics, 2018, 620, A190.	2.1	13
108	GRB 050502B optical afterglow: a jet-break at high redshift. Astronomy and Astrophysics, 2011, 526, A154.	2.1	11

#	Article	IF	CITATIONS
109	Serendipitous Discovery of an Optical Emission-line Jet in NGC 232. Astrophysical Journal Letters, 2017, 850, L17.	3.0	11
110	Microphysics and dynamics of the gamma-ray burst 121024A. Astronomy and Astrophysics, 2016, 589, A37.	2.1	7
111	GRB 071028B, a burst behind large amounts of dust in an unabsorbed galaxy. Astronomy and Astrophysics, 2011, 529, A110.	2.1	5
112	Clustering of galaxies around gamma-ray burst sight-lines. Astronomy and Astrophysics, 2013, 552, A143.	2.1	4
113	Identifying the host galaxy of the short GRB 100628A. Astronomy and Astrophysics, 2015, 583, A88.	2.1	4
114	The Optically Unbiased GRB Host (TOUGH) Survey. Proceedings of the International Astronomical Union, 2011, 7, 187-190.	0.0	3
115	Fermiâ^•GBM observations of the ultra-long GRB 091024. , 2011, , .		2
116	GRBâ€selected galaxies through cosmic time. Astronomische Nachrichten, 2015, 336, 487-492.	0.6	2
117	Dark bursts in the Swift era. AIP Conference Proceedings, 2008, , .	0.3	1
118	The nature of "dark―gamma-ray bursts. , 2010, , .		1
119	Optical/IR counterpart to the resolved X-ray jet source CXO J172337.5â^'373442 and its distance. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L114-L118.	1.2	1
120	Dust and metal column densities in GRB host galaxies. Proceedings of the International Astronomical Union, 2011, 7, 199-206.	0.0	1
121	Optical and near-infrared flares in GRB afterglows. Proceedings of the International Astronomical Union, 2011, 7, 46-53.	0.0	1
122	The circumburst density profile around GRB progenitors. , 2011, , .		1
123	The host galaxies of long gamma-ray bursts through cosmic time. International Journal of Modern Physics D, 2018, 27, 1842001.	0.9	1
124	The afterglow of XRF 071031: Evidence for correlated optical and X-ray flares. , 2009, , .		0
125	The Standard Model of GRBs at Face with GRB 090102A. , 2010, , .		0
126	Highly extinguished host galaxy of the dark GRB 020819. , 2010, , .		0

#	Article	IF	CITATIONS
127	The nature of dark gamma-ray bursts. , 2011, , .		Ο
128	The Fast Evolution of SN 2010bh associated with GRB 100316D. Proceedings of the International Astronomical Union, 2011, 7, 375-376.	0.0	0
129	What can produce a sharp late time optical re-brightening? Optical bumps in the multi-color imaging era. , 2011, , .		0
130	The Redshift Distribution of the TOUGH Survey. EAS Publications Series, 2013, 61, 397-401.	0.3	0
131	A deep search for the host galaxies of GRBs with no detected optical afterglow. EAS Publications Series, 2013, 61, 431-433.	0.3	0
132	Short GRB afterglows observed with GROND. EAS Publications Series, 2013, 61, 325-330.	0.3	0