Marie-HélÃ"ne Famelart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6550195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed dairy and plant-based yogurt alternatives: Improving their physical and sensorial properties through formulation and lactic acid bacteria cocultures. Current Research in Food Science, 2022, 5, 665-676.	5.8	13
2	Atomic force microscopy to assess the mechanical properties of individual casein micelles. Food Hydrocolloids, 2022, 128, 107577.	10.7	6
3	Rheological properties of enzymatic milk gel: Effect of ion partitioning in casein micelles. Food Hydrocolloids, 2022, 130, 107739.	10.7	8
4	Optimisation of microparticle formation by dry heating of whey proteins. Journal of Food Engineering, 2021, 291, 110221.	5.2	2
5	Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science and Technology, 2021, 108, 119-132.	15.1	32
6	Combining plant and dairy proteins in food colloid design. Current Opinion in Colloid and Interface Science, 2021, 56, 101507.	7.4	9
7	Contribution of temporal dominance of sensations performed by modality (M-TDS) to the sensory perception of texture and flavor in semi-solid products: A case study on fat-free strawberry yogurts. Food Quality and Preference, 2020, 80, 103789.	4.6	18
8	Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends in Food Science and Technology, 2020, 98, 140-149.	15.1	61
9	Influence of lactose on the formation of whey protein microparticles obtained by dry heating at alkaline pH. Food Hydrocolloids, 2019, 87, 477-486.	10.7	7
10	Influence of casein on the formation of whey protein microparticles obtained by dry heating at an alkaline pH. Food Research International, 2019, 122, 96-104.	6.2	3
11	Controlled whey protein aggregates to modulate the texture of fat-free set-type yoghurts. International Dairy Journal, 2019, 92, 28-36.	3.0	19
12	Major Role of Voluminosity in the Compressibility and Sol–Gel Transition of Casein Micelle Dispersions Concentrated at 7 °C and 20 °C. Foods, 2019, 8, 652.	4.3	9
13	Dry heating a freeze-dried whey protein powder: Formation of microparticles at pH 9.5. Journal of Food Engineering, 2018, 224, 112-120.	5.2	12
14	Gastric Emptying and Dynamic In Vitro Digestion of Drinkable Yogurts: Effect of Viscosity and Composition. Nutrients, 2018, 10, 1308.	4.1	32
15	Dry heating of whey proteins leads to formation of microspheres with useful functional properties. Food Research International, 2018, 113, 210-220.	6.2	13
16	Dry heating of whey proteins. Food Research International, 2017, 100, 31-44.	6.2	23
17	Acid gelation of whey protein microbeads of different sizes. Dairy Science and Technology, 2016, 96, 213-225.	2.2	6
18	Current ways to modify the structure of whey proteins for specific functionalities—a review. Dairy Science and Technology, 2015, 95, 795-814.	2.2	42

#	Article	IF	CITATIONS
19	Model mixtures evidence the respective roles of whey protein particles and casein micelles during acid gelation. Food Hydrocolloids, 2014, 37, 203-212.	10.7	37
20	The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 2013, 136, 1203-1212.	8.2	154
21	Comprehensive study of acid gelation of heated milk with model protein systems. International Dairy Journal, 2004, 14, 313-321.	3.0	43