Giandomenico Corrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6550020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 2015, 196, 91-108.	1.7	483
2	Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 2015, 196, 28-38.	1.7	455
3	Editorial: Biostimulants in Agriculture. Frontiers in Plant Science, 2020, 11, 40.	1.7	404
4	Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 2017, 8, 2202.	1.7	367
5	Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 2014, 5, 448.	1.7	323
6	The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 2015, 182, 124-133.	1.7	310
7	Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1655.	1.7	298
8	Improving vegetable quality in controlled environments. Scientia Horticulturae, 2018, 234, 275-289.	1.7	233
9	Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Scientia Horticulturae, 2017, 226, 353-360.	1.7	226
10	Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables. Frontiers in Plant Science, 2018, 9, 743.	1.7	224
11	Coâ€inoculation of <i>Clomus intraradices</i> andÂ <i>Trichoderma atroviride</i> acts as a biostimulant toÂpromote growth, yield andÂnutrient uptake ofÂvegetable crops. Journal of the Science of Food and Agriculture, 2015, 95, 1706-1715.	1.7	223
12	Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. Frontiers in Plant Science, 2017, 08, 131.	1.7	213
13	Nitrate in fruits and vegetables. Scientia Horticulturae, 2018, 237, 221-238.	1.7	199
14	High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab?. Frontiers in Plant Science, 2018, 9, 1197.	1.7	193
15	Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Frontiers in Plant Science, 2018, 9, 1782.	1.7	184
16	Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1214-1220.	0.5	175
17	Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy, 2018, 8, 126.	1.3	160
18	Nutrient solution concentration and growing season affect yield and quality of <i>Lactuca sativa</i> L. var. <i>acephala</i> in floating raft culture. Journal of the Science of Food and Agriculture, 2009, 89, 1682-1689.	1.7	154

#	Article	IF	CITATIONS
19	Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 2017, 29, 459-470.	1.5	153
20	Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. Journal of the Science of Food and Agriculture, 2013, 93, 1119-1127.	1.7	110
21	Protein Hydrolysate Stimulates Growth in Tomato Coupled With N-Dependent Gene Expression Involved in N Assimilation. Frontiers in Plant Science, 2018, 9, 1233.	1.7	108
22	Inducible gene expression systems and plant biotechnology. Biotechnology Advances, 2009, 27, 733-743.	6.0	107
23	Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics, 2013, 14, 515.	1.2	103
24	A Vegetal Biopolymer-Based Biostimulant Promoted Root Growth in Melon While Triggering Brassinosteroids and Stress-Related Compounds. Frontiers in Plant Science, 2018, 9, 472.	1.7	102
25	Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry, 2019, 137, 203-212.	2.8	102
26	Toward a Sustainable Agriculture Through Plant Biostimulants: From Experimental Data to Practical Applications. Agronomy, 2020, 10, 1461.	1.3	99
27	A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. Frontiers in Plant Science, 2019, 10, 493.	1.7	96
28	Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chemistry, 2017, 234, 10-19.	4.2	94
29	Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and Nitrogen Rates in Greenhouse Spinach. Agronomy, 2019, 9, 450.	1.3	93
30	Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae, 2018, 234, 361-369.	1.7	92
31	Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants, 2019, 8, 522.	1.6	89
32	Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity. Frontiers in Plant Science, 2016, 7, 842.	1.7	81
33	Mild Potassium Chloride Stress Alters the Mineral Composition, Hormone Network, and Phenolic Profile in Artichoke Leaves. Frontiers in Plant Science, 2016, 7, 948.	1.7	79
34	Systemin Regulates Both Systemic and Volatile Signaling in Tomato Plants. Journal of Chemical Ecology, 2007, 33, 669-681.	0.9	76
35	AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochemistry and Molecular Biology, 2004, 34, 1205-1213.	1.2	74
36	Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiologia Plantarum, 2010, 138, 10-21.	2.6	70

#	Article	IF	CITATIONS
37	Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy, 2019, 9, 571.	1.3	70
38	Biostimulant Application with a Tropical Plant Extract Enhances Corchorus olitorius Adaptation to Sub-Optimal Nutrient Regimens by Improving Physiological Parameters. Agronomy, 2019, 9, 249.	1.3	70
39	Nitrogen Use and Uptake Efficiency and Crop Performance of Baby Spinach (Spinacia oleracea L.) and Lamb's Lettuce (Valerianella locusta L.) Grown under Variable Sub-Optimal N Regimes Combined with Plant-Based Biostimulant Application. Agronomy, 2020, 10, 278.	1.3	70
40	Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to NaCl Stress. Frontiers in Plant Science, 2018, 9, 249.	1.7	67
41	Protein Hydrolysate or Plant Extract-based Biostimulants Enhanced Yield and Quality Performances of Greenhouse Perennial Wall Rocket Grown in Different Seasons. Plants, 2019, 8, 208.	1.6	67
42	Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza, 2020, 30, 133-147.	1.3	66
43	Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants. Biology, 2020, 9, 253.	1.3	66
44	Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biology, 2012, 12, 86.	1.6	65
45	Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to NO3-:Cl- Ratio and Nitrate Deprivation from the Nutrient Solution. Frontiers in Plant Science, 2016, 7, 978.	1.7	65
46	Phenolic Compounds and Sesquiterpene Lactones Profile in Leaves of Nineteen Artichoke Cultivars. Journal of Agricultural and Food Chemistry, 2016, 64, 8540-8548.	2.4	61
47	The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. Journal of Proteomics, 2008, 71, 176-185.	1.2	59
48	Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Scientia Horticulturae, 2015, 188, 97-105.	1.7	58
49	Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. Plant Molecular Biology Reporter, 2015, 33, 1270-1285.	1.0	56
50	Appraisal of Combined Applications of Trichoderma virens and a Biopolymer-Based Biostimulant on Lettuce Agronomical, Physiological, and Qualitative Properties under Variable N Regimes. Agronomy, 2020, 10, 196.	1.3	56
51	Metabolomic Responses of Maize Shoots and Roots Elicited by Combinatorial Seed Treatments With Microbial and Non-microbial Biostimulants. Frontiers in Microbiology, 2020, 11, 664.	1.5	54
52	Microalgae: New Source of Plant Biostimulants. Agronomy, 2020, 10, 1240.	1.3	53
53	Inducible Expression of a Phytolacca heterotepala Ribosome-Inactivating Protein Leads to Enhanced Resistance Against Major Fungal Pathogens in Tobacco. Phytopathology, 2005, 95, 206-215.	1.1	52
54	Yield and Nutritional Quality of Vesuvian Piennolo Tomato PDO as Affected by Farming System and Biostimulant Application. Agronomy, 2019, 9, 505.	1.3	52

#	Article	IF	CITATIONS
55	Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Scientific Reports, 2017, 7, 15522.	1.6	50
56	SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics, 2013, 14, 835.	1.2	49
57	Nutrient Solution Concentration Affects Growth, Mineral Composition, Phenolic Acids, and Flavonoids in Leaves of Artichoke and Cardoon. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1424-1429.	0.5	49
58	Sensory and functional quality characterization of protected designation of origin â€~Piennolo del Vesuvio' cherry tomato landraces from Campania-Italy. Food Chemistry, 2019, 292, 166-175.	4.2	48
59	Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Scientia Horticulturae, 2014, 168, 138-144.	1.7	47
60	The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Research, 2008, 17, 557-571.	1.3	43
61	(GATA)4 DNA fingerprinting identifies morphologically characterized 'San Marzano' tomato plants. Plant Breeding, 2006, 125, 173-176.	1.0	42
62	Effects of vegetal- versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Scientia Horticulturae, 2021, 284, 110123.	1.7	42
63	Relationships of Campanian olive cultivars: comparative analysis of molecular and phenotypic data. Genome, 2009, 52, 692-700.	0.9	41
64	Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. Journal of Biotechnology, 2010, 147, 1-6.	1.9	41
65	An endophytic fungi-based biostimulant modulated lettuce yield, physiological and functional quality responses to both moderate and severe water limitation. Scientia Horticulturae, 2019, 256, 108595.	1.7	40
66	Foliar Application of Different Vegetal-Derived Protein Hydrolysates Distinctively Modulates Tomato Root Development and Metabolism. Plants, 2021, 10, 326.	1.6	39
67	Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Scientia Horticulturae, 2014, 180, 72-78.	1.7	37
68	The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food Chemistry, 2020, 309, 125713.	4.2	35
69	Discrimination of â€~San Marzano' accessions: A comparison of minisatellite, CAPS and SSR markers in relation to morphological traits. Scientia Horticulturae, 2009, 120, 560-564.	1.7	34
70	Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. New Phytologist, 2010, 187, 1089-1101.	3.5	33
71	Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses. Frontiers in Plant Science, 2021, 12, 626301.	1.7	32
72	The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS ONE, 2017, 12, e0183050.	1.1	32

#	Article	IF	CITATIONS
73	Simple sequence repeats are able to trace tomato cultivars in tomato food chains. Food Control, 2011, 22, 549-554.	2.8	31
74	Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different Nitrate/Chloride Ratios in the Nutrient Solution. International Journal of Molecular Sciences, 2020, 21, 2482.	1.8	31
75	Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genetic Resources and Crop Evolution, 2013, 60, 789-798.	0.8	29
76	Successive Harvests Affect Yield, Quality and Metabolic Profile of Sweet Basil (Ocimum basilicum L.). Agronomy, 2020, 10, 830.	1.3	29
77	Morpho-Physiological Responses and Secondary Metabolites Modulation by Preharvest Factors of Three Hydroponically Grown Genovese Basil Cultivars. Frontiers in Plant Science, 2021, 12, 671026.	1.7	29
78	Authentication of the â€~Annurca' Apple in Agro-food Chain by Amplification of Microsatellite Loci. Food Biotechnology, 2007, 21, 33-43.	0.6	28
79	Foliar and Root Applications of Vegetal-Derived Protein Hydrolysates Differentially Enhance the Yield and Qualitative Attributes of Two Lettuce Cultivars Grown in Floating System. Agronomy, 2021, 11, 1194.	1.3	27
80	Biostimulatory Action of Arbuscular Mycorrhizal Fungi Enhances Productivity, Functional and Sensory Quality in â€~Piennolo del Vesuvio' Cherry Tomato Landraces. Agronomy, 2020, 10, 911.	1.3	26
81	Advances in DNA typing in the agro-food supply chain. Trends in Food Science and Technology, 2016, 52, 80-89.	7.8	25
82	Towards the Genomic Basis of Local Adaptation in Landraces. Diversity, 2017, 9, 51.	0.7	25
83	Chemical Compositions, Somatic Embryogenesis, and Somaclonal Variation in Cumin. BioMed Research International, 2017, 2017, 1-15.	0.9	24
84	Molecular and Phenotypic Diversity of Traditional European Plum (Prunus domestica L.) Germplasm of Southern Italy. Sustainability, 2019, 11, 4112.	1.6	24
85	A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism. Frontiers in Plant Science, 2020, 11, 567388.	1.7	24
86	Developmental abnormalities associated with deoxyadenosine methylation in transgenic tobacco. Plant Journal, 1998, 15, 543-551.	2.8	23
87	Transcriptional Regulation of Ascorbic Acid During Fruit Ripening in Pepper (Capsicum annuum) Varieties with Low and High Antioxidants Content. Plants, 2019, 8, 206.	1.6	23
88	Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce to salt stress. Scientia Horticulturae, 2019, 249, 22-30.	1.7	23
89	The Strength of the Nutrient Solution Modulates the Functional Profile of Hydroponically Grown Lettuce in a Genotype-Dependent Manner. Foods, 2020, 9, 1156.	1.9	23
90	An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil (Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens, 2021, 10, 797.	1.2	23

#	Article	IF	CITATIONS
91	In Silico identification and annotation of non-coding RNAs by RNA-seq and De Novo assembly of the transcriptome of Tomato Fruits. PLoS ONE, 2017, 12, e0171504.	1.1	21
92	SSR fingerprint reveals mislabeling in commercial processed tomato products. Food Control, 2015, 51, 397-401.	2.8	20
93	Morphophysiological Traits and Nitrate Content of Greenhouse Lettuce as Affected by Irrigation with Saline Water. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1716-1721.	0.5	20
94	The Metabolic Reprogramming Induced by Sub-Optimal Nutritional and Light Inputs in Soilless Cultivated Green and Red Butterhead Lettuce. International Journal of Molecular Sciences, 2020, 21, 6381.	1.8	19
95	Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants, 2020, 9, 1786.	1.6	19
96	Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae, 2021, 7, 211.	1.2	19
97	Identification of zucchini varieties in commercial food products by DNA typing. Food Control, 2018, 84, 197-204.	2.8	18
98	Plant-Derived Biostimulants Differentially Modulate Primary and Secondary Metabolites and Improve the Yield Potential of Red and Green Lettuce Cultivars. Agronomy, 2022, 12, 1361.	1.3	18
99	A Virulence Factor Encoded by a Polydnavirus Confers Tolerance to Transgenic Tobacco Plants against Lepidopteran Larvae, by Impairing Nutrient Absorption. PLoS ONE, 2014, 9, e113988.	1.1	16
100	Biostimulation as a Means for Optimizing Fruit Phytochemical Content and Functional Quality of Tomato Landraces of the San Marzano Area. Foods, 2021, 10, 926.	1.9	16
101	Inducible antiviral activity and rapid production of the Ribosome-Inactivating Protein I from Phytolacca heterotepala in tobacco. Plant Science, 2008, 174, 467-474.	1.7	15
102	Omeprazole Promotes Chloride Exclusion and Induces Salt Tolerance in Greenhouse Basil. Agronomy, 2019, 9, 355.	1.3	14
103	Systemin-inducible defence against pests is costly in tomato. Biologia Plantarum, 2011, 55, 305-311.	1.9	13
104	Understanding the Morpho-Anatomical, Physiological, and Functional Response of Sweet Basil to Isosmotic Nitrate to Chloride Ratios. Biology, 2020, 9, 158.	1.3	13
105	Accumulation of Ascorbic Acid in Tomato Cell Culture: Influence of the Genotype, Source Explant and Time of In Vitro Cultivation. Antioxidants, 2020, 9, 222.	2.2	13
106	The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity. Agronomy, 2021, 11, 564.	1.3	13
107	Trichoderma and Phosphite Elicited Distinctive Secondary Metabolite Signatures in Zucchini Squash Plants. Agronomy, 2021, 11, 1205.	1.3	13
108	A PNA microarray for tomato genotyping. Molecular BioSystems, 2011, 7, 1902.	2.9	12

#	Article	IF	CITATIONS
109	Diversity and Relationships among Neglected Apricot (Prunus armeniaca L.) Landraces Using Morphological Traits and SSR Markers: Implications for Agro-Biodiversity Conservation. Plants, 2021, 10, 1341.	1.6	12
110	Rate and Timing of Application of Biostimulant Substances to Enhance Fruit Tree Tolerance toward Environmental Stresses and Fruit Quality. Agronomy, 2022, 12, 603.	1.3	12
111	The expression of the tomato prosystemin in tobacco induces alterations irrespective of its functional domain. Plant Cell, Tissue and Organ Culture, 2016, 125, 509-519.	1.2	11
112	A comparison between constitutive and inducible transgenic expression of the PhRIP I gene for broad-spectrum resistance against phytopathogens in potato. Biotechnology Letters, 2017, 39, 1049-1058.	1.1	11
113	Biochemical, Physiological, and Productive Response of Greenhouse Vegetables to Suboptimal Growth Environment Induced by Insect Nets. Biology, 2020, 9, 432.	1.3	11
114	Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodoptera littoralis larvae. Journal of Pest Science, 2022, 95, 1413-1428.	1.9	10
115	Phytochemical Profile, Mineral Content, and Bioactive Compounds in Leaves of Seed-Propagated Artichoke Hybrid Cultivars. Molecules, 2020, 25, 3795.	1.7	9
116	Comparative analysis of genomic- and EST-SSRs in European plum (Prunus domestica L.): implications for the diversity analysis of polyploids. 3 Biotech, 2020, 10, 543.	1.1	9
117	Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light- or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application. Horticulturae, 2022, 8, 138.	1.2	9
118	De Novo Transcriptome Assembly of Cucurbita Pepo L. Leaf Tissue Infested by Aphis Gossypii. Data, 2018, 3, 36.	1.2	8
119	DNA diversity in olive (Olea europaea L.) and its relationships with fatty acid, biophenol and sensory profiles of extra virgin olive oils. Food Research International, 2016, 86, 121-130.	2.9	7
120	Dataset on the organic acids, sulphate, total nitrogen and total chlorophyll contents of two lettuce cultivars grown hydroponically using nutrient solutions of variable macrocation ratios. Data in Brief, 2020, 29, 105135.	0.5	7
121	Zucchini Plants Alter Gene Expression and Emission of (E)-β-Caryophyllene Following Aphis gossypii Infestation. Frontiers in Plant Science, 2020, 11, 592603.	1.7	7
122	Unraveling the Modulation of Controlled Salinity Stress on Morphometric Traits, Mineral Profile, and Bioactive Metabolome Equilibrium in Hydroponic Basil. Horticulturae, 2021, 7, 273.	1.2	7
123	Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca sativa L.) Varieties Grown in a Floating Hydroponic Module. Separations, 2021, 8, 175.	1.1	7
124	Isosmotic Macrocation Variation Modulates Mineral Efficiency, Morpho-Physiological Traits, and Functional Properties in Hydroponically Grown Lettuce Varieties (Lactuca sativa L.). Frontiers in Plant Science, 2021, 12, 678799.	1.7	6
125	TPS Genes Silencing Alters Constitutive Indirect and Direct Defense in Tomato. International Journal of Molecular Sciences, 2018, 19, 2748.	1.8	5
126	Influence of Berry Ripening Stages over Phenolics and Volatile Compounds in Aged Aglianico Wine. Horticulturae, 2021, 7, 184.	1.2	5

#	Article	IF	CITATIONS
127	The Modulation of Auxin-Responsive Genes, Phytohormone Profile, and Metabolomic Signature in Leaves of Tomato Cuttings Is Specifically Modulated by Different Protein Hydrolysates. Agronomy, 2021, 11, 1524.	1.3	5
128	Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity. Horticulturae, 2022, 8, 409.	1.2	5
129	Biostimulatory Action of Vegetal Protein Hydrolysate Compensates for Reduced Strength Nutrient Supply in a Floating Raft System by Enhancing Performance and Qualitative Features of "Genovese― Basil. Frontiers in Plant Science, 2022, 13, .	1.7	5
130	Macro and trace element mineral composition of six hemp varieties grown as microgreens. Journal of Food Composition and Analysis, 2022, 114, 104750.	1.9	5
131	DNA markers as a tool for genetic traceability of primary product in agri-food chains. Italian Journal of Agronomy, 2012, 7, 45.	0.4	4
132	Intraspecific Variability Largely Affects the Leaf Metabolomics Response to Isosmotic Macrocation Variations in Two Divergent Lettuce (Lactuca sativa L.) Varieties. Plants, 2021, 10, 91.	1.6	4
133	Food history and gastronomic traditions of beans in Italy. Journal of Ethnic Foods, 2022, 9, .	0.8	4
134	Transgenic expression in tobacco of a poly-proctolin construct leading to production of the bioactive peptide. Biotechnology Letters, 2004, 26, 1413-1420.	1.1	3
135	Tomatoâ€mediated interactions between root herbivores and aphids: insights into plant defence signalling. Entomologia Experimentalis Et Applicata, 2017, 163, 170-176.	0.7	3
136	1-Methylcyclopropene Improves Postharvest Performances and Sensorial Attributes of Annurca-Type Apples Exposed to the Traditional Reddening in Open-Field Melaio. Agronomy, 2021, 11, 1056.	1.3	3
137	Configuration by Osmotic Eustress Agents of the Morphometric Characteristics and the Polyphenolic Content of Differently Pigmented Baby Lettuce Varieties in Two Successive Harvests. Horticulturae, 2021, 7, 264.	1.2	3
138	Tomato Prosystemin Is Much More than a Simple Systemin Precursor. Biology, 2022, 11, 124.	1.3	3
139	Chemical, Functional, and Technological Features of Grains, Brans, and Semolina from Purple and Red Durum Wheat Landraces. Foods, 2022, 11, 1545.	1.9	3
140	Dataset on the Effects of Different Pre-Harvest Factors on the Metabolomics Profile of Lettuce (Lactuca sativa L.) Leaves. Data, 2020, 5, 119.	1.2	2
141	Host Response to Biotic Stresses. Compendium of Plant Genomes, 2016, , 75-98.	0.3	2
142	Genotypic diversity and population structure of the apricot landraces of the Campania region (Southern Italy) based on fluorescent SSRs. Genetic Resources and Crop Evolution, 0, , .	0.8	0