Yu-Chang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lenvatinib Inhibits AKT/NF-κB Signaling and Induces Apoptosis Through Extrinsic/Intrinsic Pathways in Non-small Cell Lung Cancer. Anticancer Research, 2021, 41, 123-130.	1.1	5
2	Preclinical Evaluation of Recombinant Human IL15 Protein Fused with Albumin Binding Domain on Anti-PD-L1 Immunotherapy Efficiency and Anti-Tumor Immunity in Colon Cancer and Melanoma. Cancers, 2021, 13, 1789.	3.7	15
3	ERK/AKT Inactivation and Apoptosis Induction Associate With Quetiapine-inhibited Cell Survival and Invasion in Hepatocellular Carcinoma Cells. In Vivo, 2020, 34, 2407-2417.	1.3	11
4	Regorafenib suppresses epidermal growth factor receptor signaling-modulated progression of colorectal cancer. Biomedicine and Pharmacotherapy, 2020, 128, 110319.	5.6	23
5	Hyperforin Induces Apoptosis Through Extrinsic/Intrinsic Pathways and Inhibits NF-Ä,B-modulated Survival and Invasion Potential in Bladder Cancer. In Vivo, 2019, 33, 1865-1877.	1.3	12
6	Amentoflavone Effectively Blocked the Tumor Progression of Glioblastoma via Suppression of ERK/NF-κB Signaling Pathway. The American Journal of Chinese Medicine, 2019, 47, 913-931.	3.8	30
7	Protein Kinase B and Extracellular Signal-Regulated Kinase Inactivation is Associated with Regorafenib-Induced Inhibition of Osteosarcoma Progression In Vitro and In Vivo. Journal of Clinical Medicine, 2019, 8, 900.	2.4	27
8	Apoptosis induction and AKT/NF-κB inactivation are associated with regroafenib-inhibited tumor progression in non-small cell lung cancer in vitro and in vivo. Biomedicine and Pharmacotherapy, 2019, 116, 109032.	5.6	31
9	Fluoxetine Induces Apoptosis through Extrinsic/Intrinsic Pathways and Inhibits ERK/NF-κB-Modulated Anti-Apoptotic and Invasive Potential in Hepatocellular Carcinoma Cells In Vitro. International Journal of Molecular Sciences, 2019, 20, 757.	4.1	31
10	Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice. Bioscience Reports, 2018, 38, .	2.4	35
11	Magnolol Induces Apoptosis and Inhibits ERK-modulated Metastatic Potential in Hepatocellular Carcinoma Cells. In Vivo, 2018, 32, 1361-1368.	1.3	18
12	Amentoflavone Inhibits Hepatocellular Carcinoma Progression Through Blockage of ERK/NF-ĸB Activation. In Vivo, 2018, 32, 1097-1103.	1.3	30
13	Regorafenib diminishes the expression and secretion of angiogenesis and metastasis associated proteins and inhibits cell invasion via NF-ήB inactivation in SK-Hep1 cells. Oncology Letters, 2017, 14, 461-467.	1.8	35
14	Curcumin Sensitizes Hepatocellular Carcinoma Cells to Radiation via Suppression of Radiation-Induced NF- <i>ΰ</i> B Activity. BioMed Research International, 2015, 2015, 1-7.	1.9	33
15	Curcumin Triggers DNA Damage and Inhibits Expression of DNA Repair Proteins in Human Lung Cancer Cells. Anticancer Research, 2015, 35, 3867-73.	1.1	43
16	Curcumin synergistically enhances the radiosensitivity of human oral squamous cell carcinoma via suppression of radiation-induced NF-κB activity. Oncology Reports, 2014, 31, 1729-1737.	2.6	32
17	Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-ήB signaling. International Journal of Oncology, 2014, 45, 177-188.	3.3	52
18	Using NF-κB as a molecular target for theranostics in radiation oncology research. Expert Review of Molecular Diagnostics, 2012, 12, 139-146.	3.1	24

#	Article	IF	CITATIONS
19	Sorafenib inhibits TPA-induced MMP-9 and VECF expression via suppression of ERK/NF-κB pathway in hepatocellular carcinoma cells. In Vivo, 2012, 26, 671-81.	1.3	44