Hongzhe Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549864/publications.pdf

Version: 2024-02-01

516710 1,374 27 16 citations h-index papers

27 g-index 27 27 27 1781 docs citations times ranked citing authors all docs

526287

#	Article	IF	CITATIONS
1	Morphology Controlled Synthesis of Composition Related Plasmonic CuCdS Alloy Nanocrystals. Frontiers in Chemistry, 2020, 8, 628536.	3.6	2
2	High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. Journal of Physical Chemistry Letters, 2020, 11, 960-967.	4.6	87
3	Highly Efficient Near-Infrared Light-Emitting Diodes Based on Chloride Treated CdTe/CdSe Type-II Quantum Dots. Frontiers in Chemistry, 2020, 8, 266.	3.6	10
4	Improved Efficiency of All-Inorganic Quantum-Dot Light-Emitting Diodes via Interface Engineering. Frontiers in Chemistry, 2020, 8, 265.	3.6	12
5	Se/S Ratio-Dependent Properties and Application of Gradient-Alloyed CdSe _{1â€"<i>x</i>} S <i>_x</i> Quantum Dots: Shell-free Structure, Non-blinking Photoluminescence with Single-Exponential Decay, and Efficient QLEDs. ACS Applied Materials & amp; Interfaces, 2019, 11, 6238-6247.	8.0	16
6	High-efficiency, deep blue ZnCdS/Cd $<$ sub $>$ x $<$ /sub $>$ Zn $<$ sub $>$ 1 \hat{a} ^2x $<$ /sub $>$ S/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%. Nanoscale, 2018, 10, 5650-5657.	5.6	103
7	Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. ACS Photonics, 2018, 5, 939-946.	6.6	113
8	Synthesis and Evaluation of Ideal Core/Shell Quantum Dots with Precisely Controlled Shell Growth: Nonblinking, Single Photoluminescence Decay Channel, and Suppressed FRET. Chemistry of Materials, 2018, 30, 3668-3676.	6.7	72
9	Efficient and longâ€life green lightâ€emitting diodes comprising tridentate thiol capped quantum dots. Laser and Photonics Reviews, 2017, 11, 1600227.	8.7	67
10	Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale, 2016, 8, 12182-12188.	5.6	111
11	Influence of Ambient Gas on the Performance of Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11557-11563.	8.0	13
12	Enhanced Performance of Quantum Dot-Based Light-Emitting Diodes with Gold Nanoparticle-Doped Hole Injection Layer. Nanoscale Research Letters, $2016,11,376.$	5.7	13
13	High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers. Journal of Materials Chemistry C, 2016, 4, 7223-7229.	5.5	33
14	Size-dependent surface photovoltage in CdSe nanocrystal-based thin films. RSC Advances, 2015, 5, 39714-39718.	3.6	4
15	Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale, 2015, 7, 2951-2959.	5.6	163
16	Quantum-Dot-Based Light-Emitting Diodes With Improved Brightness and Stability by Using Sulfuric Acid-Treated PEDOT:PSS as Efficient Hole Injection Layer. IEEE Nanotechnology Magazine, 2015, 14, 57-61.	2.0	4
17	Inorganic Sn–X complex ligands capped CuInS2 nanocrystals with high electron mobility. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	6
18	Highâ€Efficient Deepâ€Blue Lightâ€Emitting Diodes by Using High Quality Zn _{<i>x</i>} Cd _{1â€<i>x</i>} S/ZnS Core/Shell Quantum Dots. Advanced Functional Materials, 2014, 24, 2367-2373.	14.9	151

#	Article	IF	CITATIONS
19	Efficient and Bright Colloidal Quantum Dot Light-Emitting Diodes via Controlling the Shell Thickness of Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12011-12016.	8.0	78
20	Facile synthesis and observation of discontinuous red-shift photoluminescence of CdTe/CdS core/shell nanocrystals. CrystEngComm, 2012, 14, 272-277.	2.6	5
21	Phosphine-free synthesis of Zn1â^'xCdxSe/ZnSe/ZnSexS1â^'x/ZnS core/multishell structures with bright and stable blueâ€"green photoluminescence. Journal of Materials Chemistry, 2011, 21, 6046.	6.7	52
22	Large scale synthesis of stable tricolor Zn1 $\hat{a}^{\sim}xCdxSe$ core/multishell nanocrystals via a facile phosphine-free colloidal method. Dalton Transactions, 2011, 40, 9180.	3.3	18
23	Shape controlled synthesis of tadpole-like and heliotrope seed-like AgInS2 nanocrystals. CrystEngComm, 2010, 12, 4410.	2.6	42
24	Investigation on type-II Cu ₂ S–CdS core/shell nanocrystals: synthesis and characterization. Journal of Materials Chemistry, 2010, 20, 923-928.	6.7	54
25	Controlled synthesis of monodisperse manganese oxide nanocrystals. CrystEngComm, 2009, 11, 1128.	2.6	19
26	High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm, 2009, 11, 1733.	2.6	114
27	Investigation on the phosphine-free synthesis of CdSe nanocrystals by cadmium precursor injection. New Journal of Chemistry, 2009, 33, 2114.	2.8	12