
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549412/publications.pdf Version: 2024-02-01

RENAE M RVAN

#	Article	IF	CITATIONS
1	Acetyl-CoA-Mediated Post-Biosynthetic Modification of Desferrioxamine B Generates <i>N</i> and N- <i>O</i> -Acetylated Isomers Controlled by a pH Switch. ACS Chemical Biology, 2022, 17, 426-437.	3.4	4
2	Microscopic Characterization of the Chloride Permeation Pathway in the Human Excitatory Amino Acid Transporter 1 (EAAT1). ACS Chemical Neuroscience, 2022, 13, 776-785.	3.5	6
3	Ataxia-linked SLC1A3 mutations alter EAAT1 chloride channel activity and glial regulation of CNS function. Journal of Clinical Investigation, 2022, 132, .	8.2	10
4	Characterizing unexpected interactions of a glutamine transporter inhibitor with members of the SLC1A transporter family. Journal of Biological Chemistry, 2022, 298, 102178.	3.4	5
5	The twisting elevator mechanism of glutamate transporters reveals the structural basis for the dual transport-channel functions. Current Opinion in Structural Biology, 2022, 75, 102405.	5.7	0
6	A Novel Chloride Conducting Conformation in Human Glutamate Transporters. Biophysical Journal, 2021, 120, 171a.	0.5	0
7	Glutamate transporters have a chloride channel with two hydrophobic gates. Nature, 2021, 591, 327-331.	27.8	40
8	Glutamate Transporters (EAATS) Contain a Conserved Chloride Channel with Two Hydrophobic Gates. Biophysical Journal, 2021, 120, 104a-105a.	0.5	0
9	Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Frontiers in Cellular Neuroscience, 2021, 15, 670346.	3.7	25
10	Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochemical Research, 2020, 45, 1268-1286.	3.3	40
11	Development of an <i>N</i> -Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain. Journal of Medicinal Chemistry, 2019, 62, 2466-2484.	6.4	28
12	ldentification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics. ELife, 2019, 8, .	6.0	26
13	Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nature Communications, 2018, 9, 38.	12.8	65
14	The Split Personality of Glutamate Transporters: a Channel and a Transporter. Biophysical Journal, 2018, 114, 332a.	0.5	0
15	Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2. ACS Chemical Neuroscience, 2018, 9, 603-614.	3.5	30
16	Regulation of SLC1A4 and SLC1A5 in Prostate Cancer—Letter. Molecular Cancer Research, 2018, 16, 1809-1810.	3.4	1
17	Synthesis and in vitro evaluation of diverse heterocyclic diphenolic compounds as inhibitors of DYRK1A. Bioorganic and Medicinal Chemistry, 2018, 26, 5852-5869.	3.0	5
18	Flexible Analogues of Azaindole DYRK1A Inhibitors Elicit Cytotoxicity in Glioblastoma Cells. Australian Journal of Chemistry, 2018, 71, 789.	0.9	6

#	Article	IF	CITATIONS
19	Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer, 2018, 18, 689.	2.6	43
20	Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma. Journal of Medicinal Chemistry, 2017, 60, 2052-2070.	6.4	41
21	The amino acid transporter, <scp>SLC</scp> 1A3, is plasma membraneâ€localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017, 591, 322-330.	2.8	16
22	Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2. ACS Chemical Neuroscience, 2017, 8, 1949-1959.	3.5	29
23	Elevating the alternating-access model. Nature Structural and Molecular Biology, 2016, 23, 187-189.	8.2	30
24	Tuning the ion selectivity of glutamate transporter–associated uncoupled conductances. Journal of General Physiology, 2016, 148, 13-24.	1.9	15
25	Brain transporters: From genes and genetic disorders to function and drug discovery. Neurochemistry International, 2016, 98, 1-3.	3.8	0
26	Characterization of the Inward- and Outward-Facing Substrate Binding Sites of the Prokaryotic Aspartate Transporter, Glt _{Ph} . Biochemistry, 2016, 55, 6801-6810.	2.5	14
27	Glycine transporter2 inhibitors: Getting the balance right. Neurochemistry International, 2016, 98, 89-93.	3.8	20
28	The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter. Neurochemical Research, 2016, 41, 593-599.	3.3	19
29	Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2. PLoS ONE, 2016, 11, e0157583.	2.5	28
30	Design, Synthesis, and Biological Evaluation of Tetra‣ubstituted Thiophenes as Inhibitors of p38α MAPK. ChemistryOpen, 2015, 4, 56-64.	1.9	12
31	Transport Rates of a Glutamate Transporter Homologue Are Influenced by the Lipid Bilayer. Journal of Biological Chemistry, 2015, 290, 9780-9788.	3.4	32
32	Molecular Basis for Substrate and Inhibitor Interactions with the Glycine Transporter, GlyT2. FASEB Journal, 2015, 29, 566.6.	0.5	0
33	Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 2014, 135, 1060-1071.	5.1	179
34	Monoterpene Glycoside ESK246 from <i>Pittosporum</i> Targets LAT3 Amino Acid Transport and Prostate Cancer Cell Growth. ACS Chemical Biology, 2014, 9, 1369-1376.	3.4	35
35	Glycine transport inhibitors for the treatment of pain. Trends in Pharmacological Sciences, 2014, 35, 423-430.	8.7	69
36	The Domain Interface of the Human Glutamate Transporter EAAT1 Mediates Chloride Permeation. Biophysical Journal, 2014, 107, 621-629.	0.5	37

#	Article	IF	CITATIONS
37	Na+ Interactions with the Neutral Amino Acid Transporter ASCT1. Journal of Biological Chemistry, 2014, 289, 17468-17479.	3.4	21
38	Lipid inhibitors of high affinity glycine transporters: Identification of a novel class of analgesics. Neurochemistry International, 2014, 73, 211-216.	3.8	15
39	Mechanisms of Glutamate Transport. Physiological Reviews, 2013, 93, 1621-1657.	28.8	274
40	Oleoylâ€ <scp>l</scp> arnitine inhibits glycine transport by <scp>G</scp> ly <scp>T</scp> 2. British Journal of Pharmacology, 2013, 168, 891-902.	5.4	30
41	Molecular Determinants for Functional Differences between Alanine-Serine-Cysteine Transporter 1 and Other Glutamate Transporter Family Members. Journal of Biological Chemistry, 2013, 288, 8250-8257.	3.4	36
42	Position of the Third Na+ Site in the Aspartate Transporter GltPh and the Human Glutamate Transporter, EAAT1. PLoS ONE, 2012, 7, e33058.	2.5	65
43	Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochemical Journal, 2011, 439, 333-340.	3.7	21
44	Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. Journal of Clinical Investigation, 2011, 121, 446-453.	8.2	117
45	The position of an arginine residue influences substrate affinity and K ⁺ coupling in the human glutamate transporter, EAAT1. Journal of Neurochemistry, 2010, 114, 565-575.	3.9	36
46	Site-Directed Mutagenesis in the Study of Membrane Transporters. Methods in Molecular Biology, 2010, 637, 277-293.	0.9	4
47	Functional Characterization of a Na+-dependent Aspartate Transporter from Pyrococcus horikoshii. Journal of Biological Chemistry, 2009, 284, 17540-17548.	3.4	102
48	The Role of Cation Binding in Determining Substrate Selectivity of Glutamate Transporters. Journal of Biological Chemistry, 2009, 284, 4510-4515.	3.4	18
49	Extracellular Loops 2 and 4 of GLYT2 Are Required for N-Arachidonylglycine Inhibition of Glycine Transport. Journal of Biological Chemistry, 2009, 284, 36424-36430.	3.4	27
50	Slips, leaks and channels in glutamate transporters. Channels, 2008, 2, 51-58.	2.8	32
51	The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nature Structural and Molecular Biology, 2007, 14, 365-371.	8.2	114
52	Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature, 2007, 445, 387-393.	27.8	473
53	A channel in a transporter. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 1-6.	1.9	23
54	How and Why Are Channels in Transporters?. Science Signaling, 2005, 2005, pe17-pe17.	3.6	6

#	Article	IF	CITATIONS
55	The Chloride Permeation Pathway of a Glutamate Transporter and Its Proximity to the Glutamate Translocation Pathway. Journal of Biological Chemistry, 2004, 279, 20742-20751.	3.4	109
56	Allosteric modulation of neurotransmitter transporters at excitatory synapses. European Journal of Pharmaceutical Sciences, 2004, 23, 1-11.	4.0	31
57	Effects of sumatriptan on rat medullary dorsal horn neurons. Pain, 2004, 111, 30-37.	4.2	39
58	Allosteric Modulation of Glutamate Transporters. , 2004, , 161-174.		1
59	Site-Directed Mutagenesis in the Study of Membrane Transporters. , 2003, 227, 97-108.		1
60	Distinct Conformational States Mediate the Transport and Anion Channel Properties of the Glutamate Transporter EAAT-1. Journal of Biological Chemistry, 2002, 277, 13494-13500.	3.4	67
61	Prostaglandin E2inhibits calcium current in two subâ€populations of acutely isolated mouse trigeminal sensory neurons. Journal of Physiology, 2002, 539, 433-444.	2.9	35