Eran R Andrechek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549349/publications.pdf Version: 2024-02-01

EDAN R ANDRECHEK

#	Article	IF	CITATIONS
1	Pyruvate Kinase Isoform Expression Alters Nucleotide Synthesis to Impact Cell Proliferation. Molecular Cell, 2015, 57, 95-107.	4.5	209
2	Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics, 2017, 18, 1595-1609.	0.6	165
3	ErbB2 Is Required for Muscle Spindle and Myoblast Cell Survival. Molecular and Cellular Biology, 2002, 22, 4714-4722.	1.1	114
4	The E2F Transcription Factors Regulate Tumor Development and Metastasis in a Mouse Model of Metastatic Breast Cancer. Molecular and Cellular Biology, 2014, 34, 3229-3243.	1.1	103
5	Immunogenic Subtypes of Breast Cancer Delineated by Gene Classifiers of Immune Responsiveness. Cancer Immunology Research, 2016, 4, 600-610.	1.6	86
6	Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16387-16392.	3.3	81
7	A genomic analysis of mouse models of breast cancer reveals molecular features ofmouse models and relationships to human breast cancer. Breast Cancer Research, 2014, 16, R59.	2.2	69
8	Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene, 2005, 24, 932-937.	2.6	58
9	Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nature Communications, 2019, 10, 2138.	5.8	58
10	Estrogen-regulated feedback loop limits the efficacy of estrogen receptor–targeted breast cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7869-7878.	3.3	55
11	Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genetics, 2018, 14, e1007135.	1.5	54
12	E2F1 Drives Breast Cancer Metastasis by Regulating the Target Gene FGF13 and Altering Cell Migration. Scientific Reports, 2019, 9, 10718.	1.6	54
13	Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Molecular and Cellular Biology, 2016, 36, 1509-1525.	1.1	53
14	Gene expression profiling of neu-induced mammary tumors from transgenic mice reveals genetic and morphological similarities to ErbB2-expressing human breast cancers. Cancer Research, 2003, 63, 4920-6.	0.4	53
15	Prediction and Genetic Demonstration of a Role for Activator E2Fs in Myc-Induced Tumors. Cancer Research, 2011, 71, 1924-1932.	0.4	48
16	Patterns of cell signaling pathway activation that characterize mammary development. Development (Cambridge), 2008, 135, 2403-2413.	1.2	43
17	Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nature Communications, 2019, 10, 3261.	5.8	43
18	Functional Redundancy between β1 and β3 Integrin in Activating the IR/Akt/mTORC1 Signaling Axis to Promote ErbB2-Driven Breast Cancer. Cell Reports, 2019, 29, 589-602.e6.	2.9	35

Eran R Andrechek

#	Article	IF	CITATIONS
19	Identification of an Unfavorable Immune Signature in Advanced Lung Tumors from Nrf2-Deficient Mice. Antioxidants and Redox Signaling, 2018, 29, 1535-1552.	2.5	31
20	Reduction of Global H3K27me3 Enhances HER2/ErbB2 Targeted Therapy. Cell Reports, 2019, 29, 249-257.e8.	2.9	29
21	Increased metastasis with loss of <i>E2F2</i> in <i>Myc</i> -driven tumors. Oncotarget, 2015, 6, 38210-38224.	0.8	27
22	Mouse models of cancers: opportunities to address heterogeneity of human cancer and evaluate therapeutic strategies. Journal of Molecular Medicine, 2010, 88, 1095-1100.	1.7	25
23	An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis. Nature Communications, 2019, 10, 2901.	5.8	24
24	Integrin-uPAR signaling leads to FRA-1 phosphorylation and enhanced breast cancer invasion. Breast Cancer Research, 2018, 20, 9.	2.2	23
25	Germ-line expression of an oncogenic erbB2 allele confers resistance to erbB2-induced mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4984-4989.	3.3	22
26	Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 191-203.	1.0	18
27	Mouse Models of Breast Cancer Share Amplification and Deletion Events with Human Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2017, 22, 71-84.	1.0	17
28	Transcription factor compensation during mammary gland development in E2F knockout mice. PLoS ONE, 2018, 13, e0194937.	1.1	17
29	Conserved E2F mediated metastasis in mouse models of breast cancer and HER2 positive patients. Oncoscience, 2015, 2, 867-871.	0.9	16
30	LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development. Scientific Reports, 2016, 6, 35810.	1.6	9
31	Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer. Oncotarget, 2016, 7, 65797-65807.	0.8	9
32	How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 231-243.	1.0	7
33	Using gene expression data to direct breast cancer therapy: evidence from a preclinical trial. Journal of Molecular Medicine, 2018, 96, 111-117.	1.7	6
34	Low E2F2 activity is associated with high genomic instability and PARPi resistance. Scientific Reports, 2020, 10, 17948.	1.6	6
35	Metastasis is altered through multiple processes regulated by the E2F1 transcription factor. Scientific Reports, 2021, 11, 9502.	1.6	3
36	Developmental timing of activated erbB2 expression plays a critical role in the induction of mammary tumors. Cell Cycle, 2004, 3, 1111-3.	1.3	2

CITATIONS

#	Article	IF
37	E2F Transcription Factors in Cancer, More than the Cell Cycle. , 2021, , .	