Keegan Adair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nature Communications, 2019, 10, 4936.	5.8	371
2	Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy and Environmental Science, 2020, 13, 1318-1325.	15.6	342
3	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
4	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, 1, 239-293.	13.1	298
5	A Versatile Sn‣ubstituted Argyrodite Sulfide Electrolyte for All‣olid‣tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	10.2	183
6	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
7	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	8.8	154
8	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	5.0	120
9	Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.	18.7	109
10	Antiperovskite Electrolytes for Solid-State Batteries. Chemical Reviews, 2022, 122, 3763-3819.	23.0	96
11	Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4954-4961.	4.0	83
12	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	€State 11.1	82
13	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	5.2	77
14	Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries. ACS Energy Letters, 2020, 5, 2156-2164.	8.8	76
15	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	10.2	64
16	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	10.2	63
17	Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance. Nano Energy, 2019, 60, 111-118.	8.2	62
18	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â''2} /20 mAh cm ^{â''2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	10.2	62

KEEGAN ADAIR

#	Article	IF	CITATIONS
19	Carbon coated bimetallic sulfide nanodots/carbon nanorod heterostructure enabling long-life lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 25625-25631.	5.2	41
20	New Insight of Pyrroleâ€Like Nitrogen for Boosting Hydrogen Evolution Activity and Stability of Pt Single Atoms. Small, 2021, 17, e2004453.	5.2	38
21	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	5.2	31
22	All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport. Accounts of Materials Research, 2022, 3, 21-32.	5.9	30
23	Fast Charging All Solidâ€State Lithium Batteries Enabled by Rational Design of Dual Verticallyâ€Aligned Electrodes. Advanced Functional Materials, 2020, 30, 2005357.	7.8	24
24	Variable-Energy Hard X-ray Photoemission Spectroscopy: A Nondestructive Tool to Analyze the Cathode–Solid-State Electrolyte Interface. ACS Applied Materials & Interfaces, 2020, 12, 2293-2298.	4.0	15
25	Realizing Highâ€Performance Li‣ Batteries through Additive Manufactured and Chemically Enhanced Cathodes. Small Methods, 2021, 5, e2100176.	4.6	12
26	Molecular-layer-deposited tincone: a new hybrid organic–inorganic anode material for three-dimensional microbatteries. Chemical Communications, 2020, 56, 13221-13224.	2.2	8