Melanie A Mayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade″ong fertilization. Global Change Biology, 2022, 28, 1659-1677.	9.5	34
2	Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Siteâ€Level Applications of the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002283.	3.8	11
3	How much carbon can be added to soil by sorption?. Biogeochemistry, 2021, 152, 127-142.	3.5	27
4	Evaluation of engineered sorbents for the sorption of mercury from contaminated bank soils: a column study. Environmental Science and Pollution Research, 2021, 28, 22651-22663.	5.3	3
5	Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution, 2021, 11, 1150-1164.	1.9	28
6	Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biology, 2021, 27, 2633-2644.	9.5	33
7	Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity. Biogeosciences, 2021, 18, 1769-1786.	3.3	3
8	Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study. Global Change Biology, 2021, 27, 3035-3051.	9.5	16
9	Differential Organic Carbon Mineralization Responses to Soil Moisture in Three Different Soil Orders Under Mixed Forested System. Frontiers in Environmental Science, 2021, 9, .	3.3	7
10	Intensified Soil Moisture Extremes Decrease Soil Organic Carbon Decomposition: A Mechanistic Modeling Analysis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006392.	3.0	3
11	Phosphorus rather than nitrogen enhances CO ₂ emissions in tropical forest soils: Evidence from a laboratory incubation study. European Journal of Soil Science, 2020, 71, 495-510.	3.9	21
12	Investigating drivers of microbial activity and respiration in a forested bog. Pedosphere, 2020, 30, 135-145.	4.0	7
13	Plant roots stimulate the decomposition of complex, but not simple, soil carbon. Functional Ecology, 2020, 34, 899-910.	3.6	28
14	COSORE: A community database for continuous soil respiration and other soilâ€∎tmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	9.5	50
15	Multi-year incubation experiments boost confidence in model projections of long-term soil carbon dynamics. Nature Communications, 2020, 11, 5864.	12.8	18
16	Modeling the processes of soil moisture in regulating microbial and carbon-nitrogen cycling. Journal of Hydrology, 2020, 585, 124777.	5.4	27
17	Nitrogen Fertilization Restructured Spatial Patterns of Soil Organic Carbon and Total Nitrogen in Switchgrass and Gamagrass Croplands in Tennessee USA. Scientific Reports, 2020, 10, 1211.	3.3	7
18	Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products. Renewable and Sustainable Energy Reviews, 2020, 121, 109708.	16.4	8

MELANIE A MAYES

#	Article	IF	CITATIONS
19	Effects of nitrogen fertilization and bioenergy crop type on topsoil organic carbon and total Nitrogen contents in middle Tennessee USA. PLoS ONE, 2020, 15, e0230688.	2.5	6
20	Dissolved organic matter reduces the effectiveness of sorbents for mercury removal. Science of the Total Environment, 2019, 690, 410-416.	8.0	42
21	The global soil community and its influence on biogeochemistry. Science, 2019, 365, .	12.6	586
22	Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements. Geoscientific Model Development, 2019, 12, 1601-1612.	3.6	7
23	Source relationships between streambank soils and streambed sediments in a mercury-contaminated stream. Journal of Soils and Sediments, 2019, 19, 2007-2019.	3.0	18
24	Soil Carbon Accumulation and Nutrient Availability in Managed and Unmanaged Ecosystems of East Tennessee. Soil Science Society of America Journal, 2019, 83, 458-465.	2.2	7
25	Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO2 and 13C-Methanol. Frontiers in Microbiology, 2019, 10, 2706.	3.5	23
26	Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. Soil Biology and Biochemistry, 2019, 130, 185-194.	8.8	42
27	Reduced carbon use efficiency and increased microbial turnover with soil warming. Global Change Biology, 2019, 25, 900-910.	9.5	70
28	Soil sealing by algae: An alternative to plastic pond liners for outdoor algal cultivation. Algal Research, 2019, 38, 101414.	4.6	5
29	Phosphorus sorption on tropical soils with relevance to Earth system model needs. Soil Research, 2019, 57, 17.	1.1	20
30	Phosphate addition increases tropical forest soil respiration primarily by deconstraining microbial population growth. Soil Biology and Biochemistry, 2019, 130, 43-54.	8.8	26
31	Differential effects of warming and nitrogen fertilization on soil respiration and microbial dynamics in switchgrass croplands. GCB Bioenergy, 2018, 10, 565-576.	5.6	21
32	Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology and Evolution, 2018, 2, 499-509.	7.8	116
33	The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 2018, 137, 51-71.	3.5	139
34	Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry, 2018, 141, 109-123.	3.5	169
35	Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone. PLoS ONE, 2017, 12, e0188361.	2.5	15
36	Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101, 32-43.	8.8	483

MELANIE A MAYES

#	Article	IF	CITATIONS
37	Chemical and isotope compositions of shallow groundwater in areas impacted by hydraulic fracturing and surface mining in the Central Appalachian Basin, Eastern United States. Applied Geochemistry, 2016, 71, 73-85.	3.0	22
38	Interactions among roots, mycorrhizas and freeâ€living microbial communities differentially impact soil carbon processes. Journal of Ecology, 2015, 103, 1442-1453.	4.0	64
39	Microbial dormancy improves development and experimental validation of ecosystem model. ISME Journal, 2015, 9, 226-237.	9.8	113
40	Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling. PLoS ONE, 2014, 9, e89252.	2.5	59
41	Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences, 2014, 11, 4665-4678.	3.3	56
42	Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry, 2014, 119, 67-84.	3.5	89
43	Spatial Arrangement of Organic Compounds on a Model Mineral Surface: Implications for Soil Organic Matter Stabilization. Environmental Science & Technology, 2014, 48, 79-84.	10.0	29
44	Decomposition of added and native organic carbon from physically separated fractions of diverse soils. Biology and Fertility of Soils, 2014, 50, 613-621.	4.3	23
45	Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 100-107.	2.9	32
46	Development of microbialâ€enzymeâ€mediated decomposition model parameters through steadyâ€state and dynamic analyses. Ecological Applications, 2013, 23, 255-272.	3.8	190
47	Neutron reflectometry reveals the internal structure of organic compounds deposited on aluminum oxide. Geoderma, 2013, 192, 182-188.	5.1	13
48	Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils. Chemosphere, 2013, 92, 993-1000.	8.2	27
49	Kinetic parameters of phosphatase: A quantitative synthesis. Soil Biology and Biochemistry, 2013, 65, 105-113.	8.8	61
50	Activation Energy of Extracellular Enzymes in Soils from Different Biomes. PLoS ONE, 2013, 8, e59943.	2.5	45
51	Relation between Soil Order and Sorption of Dissolved Organic Carbon in Temperate Subsoils. Soil Science Society of America Journal, 2012, 76, 1027-1037.	2.2	65
52	Transport of Explosive Residue Surrogates in Saturated Porous Media. Water, Air, and Soil Pollution, 2012, 223, 1983-1993.	2.4	2
53	Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics. Soil Biology and Biochemistry, 2012, 48, 28-38.	8.8	77
54	Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils. PLoS ONE, 2012, 7, e50434.	2.5	33

MELANIE A MAYES

#	Article	lF	CITATIONS
55	Response of "Alamo―switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agriculture, Ecosystems and Environment, 2011, 140, 289-297.	5.3	42
56	Impact of Uranylâ^'Calciumâ^'Carbonato Complexes on Uranium(VI) Adsorption to Synthetic and Natural Sediments. Environmental Science & Technology, 2010, 44, 928-934.	10.0	169
57	CXTFIT/Excel–A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments. Computers and Geosciences, 2010, 36, 1200-1209.	4.2	56
58	Influence of Sedimentary Bedding on Reactive Transport Parameters under Unsaturated Conditions. Soil Science Society of America Journal, 2009, 73, 1938-1946.	2.2	4
59	Improving parameter estimation for column experiments by multi-model evaluation and comparison. Journal of Hydrology, 2009, 376, 567-578.	5.4	20
60	Estimating Effective Hydraulic Parameters of Unsaturated Layered Sediments Using a Cantor Bar Composite Medium Model. Vadose Zone Journal, 2008, 7, 493-499.	2.2	4
61	Quantifying the physical and chemical mass transfer processes for the fate and transport of Co(II)EDTA in a partially-weathered limestone–shale saprolite. Journal of Contaminant Hydrology, 2007, 90, 184-202.	3.3	6
62	Transport of Sr2+ and SrEDTA2â^' in partially-saturated and heterogeneous sediments. Journal of Contaminant Hydrology, 2007, 91, 267-287.	3.3	23
63	Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes. Vadose Zone Journal, 2006, 5, 140-152.	2.2	39
64	Coupled Hydrological and Geochemical Processes Governing the Fate and Transport of Sr and U in the Hanford Vadose Zone. ACS Symposium Series, 2005, , 229-250.	0.5	1
65	Quantifying the Effects of Smallâ€Scale Heterogeneities on Flow and Transport in Undisturbed Cores from the Hanford Formation. Vadose Zone Journal, 2003, 2, 664-676.	2.2	16