Richard Meilan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549239/publications.pdf

Version: 2024-02-01

72 papers

5,172 citations

35 h-index 91712 69 g-index

75 all docs

75 docs citations

75 times ranked 5840 citing authors

#	Article	IF	CITATIONS
1	The effect of a novel herbicide adjuvant in treating Amur honeysuckle (<i>Lonicera maackii</i>). Invasive Plant Science and Management, 2022, 15, 81-88.	0.5	1
2	Promoting Ethically Responsible Use of Agricultural Biotechnology. Trends in Plant Science, 2021, 26, 546-559.	4.3	25
3	Fast Determination of the Lignin Monomer Compositions of Genetic Variants of Poplar <i>via</i> Fast Pyrolysis/Atmospheric Pressure Chemical Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 2546-2551.	1.2	4
4	Rhamnogalacturonanâ€i is a determinant of cell–cell adhesion in poplar wood. Plant Biotechnology Journal, 2020, 18, 1027-1040.	4.1	24
5	Assessment of risk, extinction, and threats to Himalayan yew in Pakistan. Saudi Journal of Biological Sciences, 2020, 27, 762-767.	1.8	6
6	Stochastic techno-economic analysis of electricity produced from poplar plantations in Indiana. Renewable Energy, 2020, 149, 189-197.	4. 3	9
7	Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. Biotechnology for Biofuels, 2019, 12, 171.	6.2	37
8	Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844.	4. 6	114
9	Genetic Modification of Lignin in Hybrid Poplar (Populus alba × Populus tremula) Does Not Substantially Alter Plant Defense or Arthropod Communities. Journal of Insect Science, 2017, 17, .	0.6	4
10	BIG LEAF is a regulator of organ size and adventitious root formation in poplar. PLoS ONE, 2017, 12, e0180527.	1.1	17
11	Containment of transgenic trees by suppression of LEAFY. Nature Biotechnology, 2016, 34, 918-922.	9.4	46
12	Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354, 329-333.	6.0	944
13	Improved growth and weed control of glyphosate-tolerant poplars. New Forests, 2016, 47, 653-667.	0.7	13
14	In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid. Biotechnology for Biofuels, 2015, 8, 126.	6.2	40
15	A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chemistry, 2015, 17, 1492-1499.	4.6	370
16	Tailoring Biomass for Biochemical, Chemical or Thermochemical Catalytic Conversion. FASEB Journal, 2015, 29, 485.3.	0.2	0
17	A tapetal ablation transgene induces stable male sterility and slows field growth in Populus. Tree Genetics and Genomes, 2014, 10, 1583-1593.	0.6	21
18	Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar. Canadian Journal of Forest Research, 2014, 44, 28-35.	0.8	29

#	Article	IF	CITATIONS
19	Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 2014, 34, 1181-1198.	1.4	144
20	Figured grain in aspen is heritable and not affected by graft-transmissible signals. Trees - Structure and Function, 2013, 27, 973-983.	0.9	10
21	Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass and Bioenergy, 2013, 54, 312-321.	2.9	43
22	Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta, 2013, 238, 271-282.	1.6	92
23	Roles of JnRAP2.6-like from the Transition Zone of Black Walnut in Hormone Signaling. PLoS ONE, 2013, 8, e75857.	1.1	6
24	PHOTOPERIOD RESPONSE 1 (PHOR1)-like Genes Regulate Shoot/root Growth, Starch Accumulation, and Wood Formation in Populus. Journal of Experimental Botany, 2012, 63, 5623-5634.	2.4	11
25	Accelerating the domestication of forest trees in a changing world. Trends in Plant Science, 2012, 17, 64-72.	4.3	109
26	Intellectual property rights of biotechnologically improved plants., 2012,, 525-539.		1
27	Overexpression of Constans Homologs CO1 and CO2 Fails to Alter Normal Reproductive Onset and Fall Bud Set in Woody Perennial Poplar. PLoS ONE, 2012, 7, e45448.	1.1	48
28	Transgenic <i>Populus</i> Trees for Forest Products, Bioenergy, and Functional Genomics. Critical Reviews in Plant Sciences, 2011, 30, 415-434.	2.7	52
29	Tree genetic engineering and applications to sustainable forestry and biomass production. Trends in Biotechnology, 2011, 29, 9-17.	4.9	145
30	Activation tagging is an effective gene tagging system in Populus. Tree Genetics and Genomes, 2011, 7, 91-101.	0.6	38
31	Protecting Innovation: Genomics-Based Intellectual Property for the Development of Feedstock for Second-Generation Biofuels. Recent Patents on DNA & Gene Sequences, 2010, 4, 94-105.	0.7	3
32	A Cross-species Transcriptional Profile Analysis of Heartwood Formation in Black Walnut. Plant Molecular Biology Reporter, 2010, 28, 222-230.	1.0	13
33	China–U.S. workshop on biotechnology of bioenergy plants. Ecotoxicology, 2010, 19, 1-3.	1.1	6
34	Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 2010, 3, 27.	6.2	178
35	Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant Journal, 2010, 62, 674-688.	2.8	197
36	A KNAT3-like homeobox gene from Juglans nigra L., JnKNAT3-like, highly expressed during heartwood formation. Plant Cell Reports, 2009, 28, 1717-1724.	2.8	18

#	Article	IF	CITATIONS
37	Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Research, 2008, 17, 679-694.	1.3	37
38	Matrix attachment region elements have small and variable effects on transgene expression and stability in fieldâ€grown ⟨i⟩Populus⟨/i⟩. Plant Biotechnology Journal, 2008, 6, 887-896.	4.1	30
39	Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiology, 2008, 29, 299-312.	1.4	55
40	Stability of Herbicide Resistance over 8 Years of Coppice in Field-Grown, Genetically Engineered Poplars. Western Journal of Applied Forestry, 2008, 23, 89-93.	0.5	28
41	Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16816-16821.	3.3	172
42	Loosening lignin's grip on biofuel production. Nature Biotechnology, 2007, 25, 746-748.	9.4	155
43	Ecological and population genetics research imperatives for transgenic trees. Tree Genetics and Genomes, 2007, 3, 119-133.	0.6	30
44	Improving disease resistance of butternut (Juglans cinerea), a threatened fine hardwood: a case for single-tree selection through genetic improvement and deployment. Tree Physiology, 2006, 26, 121-128.	1.4	35
45	Enhancer trapping in woody plants: Isolation of the ET304 gene encoding a putative AT-hook motif transcription factor and characterization of the expression patterns conferred by its promoter in transgenic Populus and Arabidopsis. Plant Science, 2006, 171, 206-216.	1.7	15
46	Challenges to Commercial Use of Transgenic Plants. Journal of Crop Improvement, 2006, 18, 433-450.	0.9	5
47	Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Molecular Breeding, 2006, 19, 69-85.	1.0	48
48	Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta, 2006, 224, 288-299.	1.6	130
49	Alcohol-inducible gene expression in transgenic Populus. Plant Cell Reports, 2006, 25, 660-667.	2.8	67
50	Poplar (Populus spp.). , 2006, 344, 143-151.		43
51	Transgenic sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues. Tree Physiology, 2006, 26, 401-410.	1.4	22
52	Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiology, 2006, 26, 557-564.	1.4	17
53	Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytologist, 2005, 167, 9-18.	3.5	65
54	Overexpression of Cytosolic Ascorbate Peroxidase in Tomato Confers Tolerance to Chilling and Salt Stress. Journal of the American Society for Horticultural Science, 2005, 130, 167-173.	0.5	149

#	Article	IF	CITATIONS
55	Ten lessons from 15 years of transgenic Populus research. Forestry, 2004, 77, 455-465.	1.2	77
56	Gene and Enhancer Trap Tagging of Vascular-Expressed Genes in Poplar Trees. Plant Physiology, 2004, 134, 1742-1751.	2.3	48
57	An early-flowering genotype ofPopulus. Journal of Plant Biology, 2004, 47, 52-56.	0.9	28
58	Title is missing!. Molecular Breeding, 2003, 12, 119-132.	1.0	40
59	Activation Tagging of a Dominant Gibberellin Catabolism Gene (GA 2-oxidase) from Poplar That Regulates Tree Stature. Plant Physiology, 2003, 132, 1283-1291.	2.3	244
60	The CP4 transgene provides high levels of tolerance to Roundup \hat{A}^{\otimes} herbicide in field-grown hybrid poplars. Canadian Journal of Forest Research, 2002, 32, 967-976.	0.8	66
61	Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (<i>Populus</i>). Canadian Journal of Forest Research, 2001, 31, 268-275.	0.8	7
62	Genetically modified poplars in context. Forestry Chronicle, 2001, 77, 271-279.	0.5	45
63	Modification of Flowering in Transgenic Trees. Progress in Biotechnology, 2001, 18, 247-256.	0.2	12
64	Bacterio-opsin gene overe \tilde{A} —pression fails to elevate fungal disease resistance in transgenic poplar (<i>Populus</i>). Canadian Journal of Forest Research, 2001, 31, 268-275.	0.8	19
65	Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant Journal, 2000, 22, 235-245.	2.8	212
66	An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Reports, 2000, 19, 315-320.	2.8	159
67	635 Stability of Herbicide Resistance and GUS Expression in Transgenic Hybrid Poplars during Several Years of Field Trials and Vegetative Propagation. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 557B-557.	0.5	0
68	Floral induction in woody angiosperms. New Forests, 1997, 14, 179-202.	0.7	99
69	Transfer RNA Is the Source of Extracellular Isopentenyladenine in a Ti-Plasmidless Strain of Agrobacterium tumefaciens. Plant Physiology, 1996, 110, 431-438.	2.3	39
70	Production of Cytokinins byErwinia herbicolapv.gypsophilaeand Isolation of a Locus Conferring Cytokinin Biosynthesis. Molecular Plant-Microbe Interactions, 1995, 8, 114.	1.4	31
71	Identification of the cytokinins in red pine seedlings. Plant Growth Regulation, 1993, 13, 169-178.	1.8	5
72	Cytokinins in Plant Pathogenic Bacteria and Developing Cereal Grains. Functional Plant Biology, 1993, 20, 621.	1.1	81