
Yoichiro Kuninobu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of fluorenes and their related compounds from biaryls and Meldrum's acid derivatives. Chemical Communications, 2022, 58, 843-846.	4.1	4
2	Palladium-Catalyzed Enantioselective C(sp ³)–H Arylation of 2-Propyl Azaaryls Enabled by an Amino Acid Ligand. Organic Letters, 2022, 24, 1286-1291.	4.6	8
3	Control of Site-Selectivity in Hydrogen Atom Transfer by Electrostatic Interaction: Proximal-Selective C(sp ³)–H Alkylation of 2-Methylanilinium Salts Using a Decatungstate Photocatalyst. ACS Catalysis, 2022, 12, 3058-3062.	11.2	14
4	Iridium atalyzed C(sp ³)â°'H Borylation Using Silylâ€Bipyridine Pincer Ligands. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
5	Creation of Transition Metal Catalysts with Substrate Recognition Moiety and Development of Regioselective and Substrate Specific Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 421-430.	0.1	1
6	Photoinduced Divergent Deaminative Borylation and Hydrodeamination of Primary Aromatic Amines. Organic Letters, 2022, 24, 4281-4285.	4.6	11
7	Regioselective C-H Trifluoromethylation of Heteroaromatic Compounds. Bulletin of the Chemical Society of Japan, 2021, 94, 532-541.	3.2	16
8	Regioselective C(sp ³)–H alkylation of a fructopyranose derivative by 1,6-HAT. Organic and Biomolecular Chemistry, 2021, 19, 3124-3127.	2.8	6
9	Facile synthesis of tribenzosilepins from terphenyls and dihydrosilanes by electrophilic double silylation. Chemical Communications, 2021, 57, 7007-7010.	4.1	6
10	Urea-accelerated Iridium-catalyzed 2-Position-selective C–H Borylation of Indole Derivatives. Chemistry Letters, 2021, 50, 808-811.	1.3	2
11	Manganese/bipyridine-catalyzed non-directed C(sp ³)–H bromination using NBS and TMSN ₃ . Beilstein Journal of Organic Chemistry, 2021, 17, 885-890.	2.2	6
12	Regioselective C–H Trifluoromethylation of Aromatic Compounds by Inclusion in Cyclodextrins. Organic Letters, 2021, 23, 4327-4331.	4.6	12
13	Photoinduced Deaminative Borylation of Unreactive Aromatic Amines Enhanced by CO ₂ . Organic Letters, 2021, 23, 4774-4778.	4.6	13
14	C–N and C–O Bond Formation in Copper-Catalyzed/Mediated sp ³ C–H Activation: Mechanistic Studies from Experimental and Computational Aspects. Journal of Organic Chemistry, 2020, 85, 9713-9726.	3.2	10
15	Recent progress of transition metal-catalysed regioselective C–H transformations based on noncovalent interactions. Organic and Biomolecular Chemistry, 2020, 18, 4126-4134.	2.8	39
16	Palladiumâ€Catalyzed Secondary C(sp 3)â^'H Arylation of 2â€Alkylpyridines. Advanced Synthesis and Catalysis, 2020, 362, 2637-2641.	4.3	9
17	Synthesis of six-membered silacycles by borane-catalyzed double sila-Friedel–Crafts reaction. Beilstein Journal of Organic Chemistry, 2020, 16, 409-414.	2.2	3
18	Copper-Catalyzed Tertiary Alkylative Cyanation for the Synthesis of Cyanated Peptide Building Blocks. Journal of the American Chemical Society, 2020, 142, 1692-1697.	13.7	19

УОІСНІКО КИМІМОВИ

#	Article	IF	CITATIONS
19	Synthesis, structures and photophysical properties of hexacoordinated organosilicon compounds with 2-(2-pyridyl)phenyl groups. Organic and Biomolecular Chemistry, 2020, 18, 3239-3242.	2.8	7
20	lridium-Catalyzed <i>ortho</i> -C–H Borylation of Thioanisole Derivatives Using Bipyridine-Type Ligand. Organic Letters, 2020, 22, 3485-3489.	4.6	17
21	Control of Multicolor and White Emission by Adjusting the Equilibrium between Fluorophores, Lewis Acids, and Their Complexes in Polymers. Angewandte Chemie - International Edition, 2019, 58, 14457-14461.	13.8	31
22	Control of Multicolor and White Emission by Adjusting the Equilibrium between Fluorophores, Lewis Acids, and Their Complexes in Polymers. Angewandte Chemie, 2019, 131, 14599-14603.	2.0	11
23	Donor–Acceptor π-Conjugated Enamines: Functional Group-Compatible Synthesis from Amides and Their Photoabsorption and Photoluminescence Properties. Journal of Organic Chemistry, 2019, 84, 15236-15254.	3.2	13
24	Hydrogen Bond-Accelerated <i>meta</i> -Selective C–H Borylation of Aromatic Compounds and Expression of Functional Group and Substrate Specificities. ACS Catalysis, 2019, 9, 1705-1709.	11.2	56
25	2-Position-Selective Trifluoromethylthiolation of Six-Membered Heteroaromatic Compounds. Organic Letters, 2019, 21, 4289-4292.	4.6	21
26	Hydrogen-Bond-Controlled Formal <i>Meta</i> -Selective C–H Transformations and Regioselective Synthesis of Multisubstituted Aromatic Compounds. Organic Letters, 2019, 21, 1342-1346.	4.6	25
27	Lewis acid-catalyzed synthesis of silafluorene derivatives from biphenyls and dihydrosilanes <i>via</i> a double sila-Friedel–Crafts reaction. Chemical Communications, 2019, 55, 13303-13306.	4.1	16
28	Palladium-Catalyzed C–H Heteroarylation of 2,5-Disubstituted Imidazoles. Chemical and Pharmaceutical Bulletin, 2019, 67, 196-198.	1.3	2
29	2-Position-Selective C–H Perfluoroalkylation of Quinoline Derivatives. Organic Letters, 2018, 20, 1593-1596.	4.6	42
30	Palladium-Catalyzed Synthesis of Diaryl Ketones from Aldehydes and (Hetero)Aryl Halides via C–H Bond Activation. ACS Catalysis, 2018, 8, 3123-3128.	11.2	72
31	Preparation of Solid-state Luminescent Materials by Complexation between π-Conjugated Molecules and Activators. Chemistry Letters, 2018, 47, 1391-1394.	1.3	5
32	Development of Novel C–H Bond Transformations and Their Application to the Synthesis of Organic Functional Molecules. Synlett, 2018, 29, 2093-2107.	1.8	15
33	Iron-Catalyzed Acyloxyalkylation of Styrenes Using Hypervalent Iodine Reagents. Organic Letters, 2017, 19, 2398-2401.	4.6	25
34	Lewis Acid–Base Interaction ontrolled <i>ortho</i> â€Selective Câ^'H Borylation of Aryl Sulfides. Angewandte Chemie - International Edition, 2017, 56, 1495-1499.	13.8	127
35	Iridium/Bipyridine-Catalyzed <i>ortho</i> -Selective C–H Borylation of Phenol and Aniline Derivatives. Organic Letters, 2017, 19, 5944-5947.	4.6	57
36	Iron-Catalyzed <i>ortho</i> -Selective C–H Borylation of 2-Phenylpyridines and Their Analogs. Organic Letters, 2017, 19, 3450-3453.	4.6	44

#	Article	IF	CITATIONS
37	The Development of Novel C-H Bond Transformations and Their Application to the Synthesis of Organic Functional Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 1058-1068.	0.1	8
38	Rhodiumâ€Catalyzed Synthesis of Chiral Spiroâ€9â€silabifluorenes by Dehydrogenative Silylation: Mechanistic Insights into the Construction of Tetraorganosilicon Stereocenters. Chemistry - A European Journal, 2016, 22, 6048-6058.	3.3	105
39	4-Position-Selective C–H Perfluoroalkylation and Perfluoroarylation of Six-Membered Heteroaromatic Compounds. Journal of the American Chemical Society, 2016, 138, 6103-6106.	13.7	114
40	5-Position-selective C–H trifluoromethylation of 8-aminoquinoline derivatives. Organic and Biomolecular Chemistry, 2016, 14, 8092-8100.	2.8	62
41	Manganese- and Borane-Mediated Synthesis of Isobenzofuranones from Aromatic Esters and Oxiranes via C–H Bond Activation. Organic Letters, 2016, 18, 304-307.	4.6	131
42	Benzylic C(sp ³)H Perfluoroalkylation of Sixâ€Membered Heteroaromatic Compounds. Angewandte Chemie - International Edition, 2015, 54, 10263-10266.	13.8	59
43	C–H Bond Transformations Leading to the Synthesis of Organic Functional Materials. Synthesis, 2015, 47, 3823-3845.	2.3	50
44	Rhenium-catalysed dehydrogenative borylation of primary and secondary C(sp ³)–H bonds adjacent to a nitrogen atom. Chemical Communications, 2015, 51, 4583-4586.	4.1	28
45	Iridium-Catalyzed ortho-Selective C–H Silylation of Aromatic Compounds Directed toward the Synthesis of ΀-Conjugated Molecules with Lewis Acid–Base Interaction. Organic Letters, 2015, 17, 1758-1761.	4.6	35
46	A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate. Nature Chemistry, 2015, 7, 712-717.	13.6	425
47	Palladium atalyzed CH Fluorosilylation of 2â€Phenylpyridines: Synthesis of Silafluorene Equivalents. Angewandte Chemie - International Edition, 2014, 53, 3168-3172.	13.8	52
48	Copper-catalyzed benzylic C(sp3)–H alkoxylation of heterocyclic compounds. Organic and Biomolecular Chemistry, 2014, 12, 2528-2532.	2.8	36
49	Regioselective trifluoromethylation of N-heteroaromatic compounds using trifluoromethyldifluoroborane activator. Nature Communications, 2014, 5, 3387.	12.8	113
50	Copper atalyzed Intramolecular C(sp ³)H and C(sp ²)H Amidation by Oxidative Cyclization. Angewandte Chemie - International Edition, 2014, 53, 3496-3499.	13.8	222
51	Synthesis of Pyridine <i>N</i> â€Oxide–BF ₂ CF ₃ Complexes and Their Fluorescence Properties. Chemistry - an Asian Journal, 2014, 9, 1026-1030.	3.3	19
52	Copper-Mediated Direct C(sp ³)–H and C(sp ²)–H Acetoxylation. Organic Letters, 2014, 16, 4790-4793.	4.6	106
53	Palladium-Catalyzed Direct C–H Silylation and Germanylation of Benzamides and Carboxamides. Organic Letters, 2014, 16, 1968-1971.	4.6	135
54	Rhodium-Catalyzed Intramolecular Silylation of Unactivated C(sp ³)–H Bonds. Organic Letters, 2013, 15, 426-428.	4.6	93

#	Article	IF	CITATIONS
55	Rhodium atalyzed Asymmetric Synthesis of Spirosilabifluorene Derivatives. Angewandte Chemie - International Edition, 2013, 52, 1520-1522.	13.8	224
56	Palladiumâ€Catalyzed <i>ortho</i> â€Selective CH Borylation of 2â€Phenylpyridine and Its Derivatives at Room Temperature. Angewandte Chemie - International Edition, 2013, 52, 4431-4434.	13.8	90
57	Development of Novel and Highly Efficient Methods to Construct Carbon–Carbon Bonds Using Group 7 Transition-Metal Catalysts. Bulletin of the Chemical Society of Japan, 2012, 85, 656-671.	3.2	32
58	Rhenium-catalyzed allylation of C–H bonds of benzoic and acrylic acids. Chemical Communications, 2011, 47, 10791.	4.1	61
59	Rhenium-Catalyzed Regio- and Stereoselective Addition of Two Carbon Units to Terminal Alkynes via Carbon–Carbon Bond Cleavage of β-Keto Sulfones. Organic Letters, 2011, 13, 2959-2961.	4.6	46
60	Palladium-Catalyzed Synthesis of Dibenzophosphole Oxides via Intramolecular Dehydrogenative Cyclization. Journal of Organic Chemistry, 2011, 76, 7370-7376.	3.2	140
61	Organic Reactions Catalyzed by Rhenium Carbonyl Complexes. Chemical Reviews, 2011, 111, 1938-1953.	47.7	230
62	Indium-Catalyzed Construction of Polycyclic Aromatic Hydrocarbon Skeletons via Dehydration. Journal of Organic Chemistry, 2011, 76, 7005-7009.	3.2	101
63	Manganese atalyzed Cleavage of a Carbon–Carbon Single Bond between Carbonyl Carbon and α arbon Atoms of Ketones. Angewandte Chemie - International Edition, 2011, 50, 10406-10408.	13.8	73
64	Rhenium-Catalyzed Diastereoselective Synthesis of Aminoindanes via the Insertion of Allenes into a Câ ^{~°} H Bond. Organic Letters, 2010, 12, 4274-4276.	4.6	101
65	Synthesis of Functionalized Pentacenes from Isobenzofurans Derived from Câ [~] 'H Bond Activation. Organic Letters, 2010, 12, 5287-5289.	4.6	28
66	Indium atalyzed Synthesis of Keto Esters from Cyclic 1,3â€Diketones and Alcohols and Application to the Synthesis of Seratrodast. Chemistry - an Asian Journal, 2010, 5, 941-945.	3.3	16
67	Cross-Coupling Reactions between C(sp²)-H and C(sp³)-H Bonds via Sequential Dehydrogenation and C-H Insertion. Synlett, 2010, 2010, 2883-2886.	1.8	9
68	Rhenium- and manganese-catalyzed carbon–carbon bond formation using 1,3-dicarbonyl compounds and alkynes. Pure and Applied Chemistry, 2010, 82, 1491-1501.	1.9	10
69	Rhenium-Catalyzed Synthesis of Indenones by Novel Dehydrative Trimerization of Aryl Aldehydes via Câ ^{~^} H Bond Activation. Organic Letters, 2010, 12, 2948-2950.	4.6	75
70	Rhenium- and Manganese-Catalyzed Synthesis of Aromatic Compounds from 1,3-Dicarbonyl Compounds and Alkynes. Journal of Organic Chemistry, 2010, 75, 334-341.	3.2	47
71	Iron-catalyzed synthesis of glycine derivatives via carbon–nitrogen bond cleavage using diazoacetate. Chemical Communications, 2010, 46, 8860.	4.1	45
72	Rhodium-Catalyzed Synthesis of Silafluorene Derivatives via Cleavage of Siliconâ^'Hydrogen and Carbonâ^'Hydrogen Bonds. Journal of the American Chemical Society, 2010, 132, 14324-14326.	13.7	212

УОІСНІКО КИМІМОВИ

#	Article	IF	CITATIONS
73	Regioselective functionalization of alkanes by sequential dehydrogenation–hydrozirconation. Chemical Communications, 2010, 46, 5310.	4.1	11
74	Rhenium-Catalyzed Formation of Bicyclo[3.3.1]nonene Frameworks by a Reaction of Cyclic β-Keto Esters with Terminal Alkynes. Organic Letters, 2009, 11, 2535-2537.	4.6	41
75	Rhenium-Catalyzed Insertion of Nonpolar and Polar Unsaturated Molecules into an Olefinic Câ^'H Bond. Organic Letters, 2009, 11, 2711-2714.	4.6	87
76	Rhenium―and Manganeseâ€Catalyzed Insertion of Alkynes into a Carbon–Carbon Single Bond of Cyclic and Acyclic 1,3â€Dicarbonyl Compounds. Chemistry - an Asian Journal, 2009, 4, 1424-1433.	3.3	42
77	Rhenium-Catalyzed Regioselective Alkylation of Phenols. Journal of the American Chemical Society, 2009, 131, 9914-9915.	13.7	89
78	Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via Câ^'C Single-Bond Cleavage. Organic Letters, 2008, 10, 3133-3135.	4.6	70
79	Manganese-Catalyzed Construction of Tetrasubstituted Benzenes from 1,3-Dicarbonyl Compounds and Terminal Acetylenes. Organic Letters, 2008, 10, 3009-3011.	4.6	61
80	Rhenium- and manganese-catalyzed insertion of acetylenes into β-keto esters: synthesis of 2-pyranones. Chemical Communications, 2008, , 6360.	4.1	65
81	Synthesis of Cpâ^'Re Complexes via Olefinic Câ^'H Activation and Successive Formation of Cyclopentadienes. Journal of the American Chemical Society, 2008, 130, 14062-14063.	13.7	50
82	Rhenium-catalyzed synthesis of indene derivatives via C-H bond activation. Pure and Applied Chemistry, 2008, 80, 1149-1154.	1.9	22
83	Manganese-catalyzed Synthesis of Hydantoin Derivatives from Terminal Alkynes and Isocyanates. Chemistry Letters, 2008, 37, 740-741.	1.3	41
84	Rearrangement of Indene Skeletons under Mild Conditions. Journal of Organic Chemistry, 2007, 72, 6749-6752.	3.2	12
85	Rhenium- and Gold-Catalyzed Coupling of Aromatic Aldehydes with Trimethyl(phenylethynyl)silane: Synthesis of Diethynylmethanes. Angewandte Chemie - International Edition, 2007, 46, 3296-3299.	13.8	58
86	Manganese atalyzed Insertion of Aldehydes into a Cï£;H Bond. Angewandte Chemie - International Edition, 2007, 46, 6518-6520.	13.8	230
87	Insertion of Polar and Nonpolar Unsaturated Molecules into Carbonâ^'Rhenium Bonds Generated by Câr'H Bond Activation:Â Synthesis of Phthalimidine and Indene Derivatives. Journal of the American Chemical Society, 2006, 128, 202-209.	13.7	259
88	lsocyanate acting as a carbonyl precursor: pyridyl group-assisted formation of 4H-pyrido[1,2-a]pyrimidin-4-ones from ketimines and isocyanates. Organic and Biomolecular Chemistry, 2006, 4, 203-205.	2.8	14
89	Rhenium-Catalyzed Insertion of Aldehyde into a Câ^'H Bond:Â Synthesis of Isobenzofuran Derivatives. Journal of the American Chemical Society, 2006, 128, 12376-12377.	13.7	138
90	Sequential Ruthenium-Catalyzed Hydroamination and Rhenium-Catalyzed Câ^'H Bond Activation Leading to Indene Derivatives. Organic Letters, 2006, 8, 2891-2893.	4.6	39

#	Article	IF	CITATIONS
91	Efficient Catalytic Insertion of Acetylenes into a Carbonâ^'Carbon Single Bond of Nonstrained Cyclic Compounds under Mild Conditions. Journal of the American Chemical Society, 2006, 128, 11368-11369.	13.7	102
92	Rhenium- and Aniline-Catalyzed One-Pot Annulation of Aromatic Ketones and α,β-Unsaturated Esters Initiated by CH Bond Activation. Angewandte Chemie - International Edition, 2006, 45, 2766-2768.	13.8	118
93	Rhenium-Catalyzed Insertion of Terminal Acetylenes into a Câ^'H Bond of Active Methylene Compounds. Organic Letters, 2005, 7, 4823-4825.	4.6	104
94	Rhenium-Catalyzed Formation of Indene Frameworks via Câ^'H Bond Activation:Â [3+2] Annulation of Aromatic Aldimines and Acetylenes. Journal of the American Chemical Society, 2005, 127, 13498-13499.	13.7	233
95	Photoinduced organic reactions by pyrene catalysts. Synthesis, 0, , .	2.3	3
96	Iridium atalyzed C(sp ³)â^'H Borylation Using Silylâ€Bipyridine Pincer Ligands. Angewandte Chemie, 0, , .	2.0	1