Bin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548947/publications.pdf

Version: 2024-02-01

		126907	182427
54	8,022 citations	33	51
papers	citations	h-index	g-index
55	55	55	7808
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel histone modifications in microglia derived from a mouse model of chronic pain. Proteomics, 2022, , 2100137.	2.2	1
2	Establishment of a Simple and Versatile Evaporation Compensation Model for In Vitro Chronic Ethanol Treatment: Impact on Neuronal Viability. Neuroglia (Basel, Switzerland), 2022, 3, 61-72.	0.9	O
3	Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression. Toxicological Sciences, 2021, 182, 260-274.	3.1	6
4	Binge ethanol consumption-associated behavioral impairments in male mice using a gelatin-based drinking-in-the dark model. Alcohol, 2021, 95, 25-36.	1.7	2
5	Chronic Voluntary Binge Ethanol Consumption Causes Sexâ€pecific Differences in Microglial Signaling Pathways and Withdrawalâ€associated Behaviors in Mice. Alcoholism: Clinical and Experimental Research, 2020, 44, 1791-1806.	2.4	22
6	Functional Pathway Identification With CRISPR/Cas9 Genome-wide Gene Disruption in Human Dopaminergic Neuronal Cells Following Chronic Treatment With Dieldrin. Toxicological Sciences, 2020, 176, 366-381.	3.1	14
7	Deep proteome profiling reveals novel pathways associated with pro-inflammatory and alcohol-induced microglial activation phenotypes. Journal of Proteomics, 2020, 220, 103753.	2.4	16
8	Improved Methodology for Sensitive and Rapid Quantitative Proteomic Analysis of Adultâ€Derived Mouse Microglia: Application to a Novel In Vitro Mouse Microglial Cell Model. Proteomics, 2019, 19, 1800469.	2.2	15
9	Role of NADPH oxidase in cooperative reactive oxygen species generation in dopaminergic neurons induced by combined treatment with dieldrin and lindane. Toxicology Letters, 2018, 299, 47-55.	0.8	12
10	De Novo and Uninterrupted SILAC Labeling of Primary Microglia. Methods in Molecular Biology, 2017, 1598, 285-293.	0.9	0
11	Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia. Methods in Molecular Biology, 2017, 1598, 295-312.	0.9	2
12	Ischemiaâ€responsive protein 94 is a key mediator of ischemic neuronal injuryâ€induced microglial activation. Journal of Neurochemistry, 2017, 142, 908-919.	3.9	6
13	Characterization of a SILAC method for proteomic analysis of primary rat microglia. Proteomics, 2016, 16, 1341-1346.	2.2	7
14	Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*. Molecular and Cellular Proteomics, 2015, 14, 3173-3184.	3.8	51
15	Complex II of the Mitochondrial Respiratory Chain Is the Key Mediator of Divalent Manganese-Induced Hydrogen Peroxide Production in Microglia. Toxicological Sciences, 2013, 132, 298-306.	3.1	48
16	Quantitative Proteomic Characterization of Ethanol-Responsive Pathways in Rat Microglial Cells. Journal of Proteome Research, 2013, 12, 2067-2077.	3.7	34
17	Involvement of dopaminergic neuronal cystatin C in neuronal injuryâ€induced microglial activation and neurotoxicity. Journal of Neurochemistry, 2012, 122, 752-763.	3.9	36
18	Proteomic analysis of rat microglia establishes a highâ€confidence reference data set of over 3000 proteins. Proteomics, 2012, 12, 246-250.	2.2	14

#	Article	IF	CITATIONS
19	Stable Isotope Labeling with Amino Acids in Cell Culture-Based Proteomic Analysis of Ethanol-Induced Protein Expression Profiles in Microglia. Methods in Molecular Biology, 2012, 829, 551-565.	0.9	12
20	Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: differential involvement of microglia and astroglia. Journal of Neurochemistry, 2010, 112, 434-443.	3.9	70
21	Organochlorine pesticides dieldrin and lindane induce cooperative toxicity in dopaminergic neurons: Role of oxidative stress. NeuroToxicology, 2010, 31, 215-222.	3.0	76
22	Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: Role of free radical generation. Experimental Neurology, 2009, 217, 219-230.	4.1	63
23	Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. Journal of Neurochemistry, 2008, 77, 182-189.	3.9	15
24	The lipopolysaccharide Parkinson's disease animal model: mechanistic studies and drug discovery. Fundamental and Clinical Pharmacology, 2008, 22, 453-464.	1.9	197
25	Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin. NeuroReport, 2008, 19, 1317-1320.	1.2	32
26	Manganese chloride stimulates rat microglia to release hydrogen peroxide. Toxicology Letters, 2007, 173, 88-100.	0.8	66
27	PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Pahenu2 mice. Brain Research, 2007, 1127, 136-150.	2.2	24
28	Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin. Brain Research, 2007, 1186, 267-274.	2.2	40
29	Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS Journal, 2006, 8, E606-E621.	4.4	95
30	Protective effect of dextromethorphan against endotoxic shock in mice. Biochemical Pharmacology, 2005, 69, 233-240.	4.4	53
31	Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia, 2005, 52, 78-84.	4.9	179
32	3â∈Hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPSâ€induced neurotoxicity. FASEB Journal, 2005, 19, 1-25.	0.5	65
33	MPP + â€induced COXâ€2 activation and subsequent dopaminergic neurodegeneration. FASEB Journal, 2005, 19, 1134-1136.	0.5	105
34	Andrographolide Reduces Inflammation-Mediated Dopaminergic Neurodegeneration in Mesencephalic Neuron-Glia Cultures by Inhibiting Microglial Activation. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 975-983.	2.5	117
35	Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB Journal, 2004, 18, 589-591.	0.5	181
36	Role of reactive oxygen species in LPSâ€induced production of prostaglandin E ₂ in microglia. Journal of Neurochemistry, 2004, 88, 939-947.	3.9	206

#	Article	lF	CITATIONS
37	NADPH Oxidase Mediates Lipopolysaccharide-induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia. Journal of Biological Chemistry, 2004, 279, 1415-1421.	3.4	510
38	Primary Rat Mesencephalic Neuron-Glia, Neuron-Enriched, Microglia-Enriched, and Astroglia-Enriched Cultures., 2003, 79, 387-396.		34
39	Role of Microglia in Inflammation-Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1-7.	2.5	1,019
40	Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation Environmental Health Perspectives, 2003, 111, 1065-1073.	6.0	240
41	Novel anti-inflammatory therapy for Parkinson's disease. Trends in Pharmacological Sciences, 2003, 24, 395-401.	8.7	303
42	Critical role of microglial NADPH oxidaseâ€derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB Journal, 2003, 17, 1-22.	0.5	263
43	Dextromethorphan Protects Dopaminergic Neurons against Inflammation-Mediated Degeneration through Inhibition of Microglial Activation. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 212-218.	2.5	186
44	Critical Role for Microglial NADPH Oxidase in Rotenone-Induced Degeneration of Dopaminergic Neurons. Journal of Neuroscience, 2003, 23, 6181-6187.	3.6	314
45	Synergistic Dopaminergic Neurotoxicity of the Pesticide Rotenone and Inflammogen Lipopolysaccharide: Relevance to the Etiology of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 1228-1236.	3.6	220
46	Inhibition by Naloxone Stereoisomers of \hat{l}^2 -Amyloid Peptide ($1\hat{a}$ e"42)-induced Superoxide Production in Microglia and Degeneration of Cortical and Mesencephalic Neurons. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 1212-1219.	2.5	96
47	Distinct Role for Microglia in Rotenone-Induced Degeneration of Dopaminergic Neurons. Journal of Neuroscience, 2002, 22, 782-790.	3.6	408
48	Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. Journal of Neurochemistry, 2002, 81, 1285-1297.	3.9	614
49	p38 MAP Kinase Is Involved in Lipopolysaccharideâ€Induced Dopaminergic Neuronal Cell Death in Rat Mesencephalic Neuronâ€Glia Cultures. Annals of the New York Academy of Sciences, 2002, 962, 332-346.	3.8	56
50	Role of Nitric Oxide in Inflammationâ€Mediated Neurodegeneration. Annals of the New York Academy of Sciences, 2002, 962, 318-331.	3.8	395
51	Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. Journal of Neurochemistry, 2001, 77, 182-189.	3.9	252
52	Regional Difference in Susceptibility to Lipopolysaccharide-Induced Neurotoxicity in the Rat Brain: Role of Microglia. Journal of Neuroscience, 2000, 20, 6309-6316.	3.6	801
53	Inhibition of the Neutral Magnesium-dependent Sphingomyelinase by Glutathione. Journal of Biological Chemistry, 1997, 272, 16281-16287.	3.4	280
54	Expression of Neutral Sphingomyelinase Identifies a Distinct Pool of Sphingomyelin Involved in Apoptosis. Journal of Biological Chemistry, 1997, 272, 9609-9612.	3.4	149