
Peter J Mchugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548897/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Characterization of the SARS-CoV-2 ExoN (nsp14ExoN–nsp10) complex: implications for its role in viral genome stability and inhibitor identification. Nucleic Acids Research, 2022, 50, 1484-1500.	14.5	36
2	Genetic and functional insights into CDA-I prevalence and pathogenesis. Journal of Medical Genetics, 2021, 58, 185-195.	3.2	9
3	The HelQ human DNA repair helicase utilizes a PWI-like domain for DNA loading through interaction with RPA, triggering DNA unwinding by the HelQ helicase core. NAR Cancer, 2021, 3, zcaa043.	3.1	11
4	Neuronal enhancers are hotspots for DNA single-strand break repair. Nature, 2021, 593, 440-444.	27.8	126
5	A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Research, 2021, 49, 9294-9309.	14.5	8
6	Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition. Nucleic Acids Research, 2021, 49, 9310-9326.	14.5	20
7	Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 2020, 586, 292-298.	27.8	95
8	The SNM1A DNA repair nuclease. DNA Repair, 2020, 95, 102941.	2.8	23
9	XPF–ERCC1: Linchpin of DNA crosslink repair. PLoS Genetics, 2020, 16, e1008616.	3.5	9
10	Analysis of DNA Interstrand Cross-Links and their Repair by Modified Comet Assay. Methods in Molecular Biology, 2020, 2119, 79-88.	0.9	4
11	A hydroxamic-acid-containing nucleoside inhibits DNA repair nuclease SNM1A. Organic and Biomolecular Chemistry, 2019, 17, 8094-8105.	2.8	13
12	Optimised oligonucleotide substrates to assay XPF-ERCC1 nuclease activity for the discovery of DNA repair inhibitors. Chemical Communications, 2019, 55, 11671-11674.	4.1	2
13	Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Research, 2019, 47, 7402-7417.	14.5	100
14	Antiviral activity of bone morphogenetic proteins and activins. Nature Microbiology, 2019, 4, 339-351.	13.3	39
15	PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nature Communications, 2018, 9, 746.	12.8	156
16	In Silico Fragment-Based Design Identifies Subfamily B1 Metallo-Î ² -lactamase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1255-1260.	6.4	40
17	Squaramideâ€Based 5'â€Phosphate Replacements Bind to the DNA Repair Exonuclease SNM1A. ChemistrySelect, 2018, 3, 12824-12829.	1.5	15
18	Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Cell Reports, 2018, 23, 3419-3428.	6.4	63

Peter J Mchugh

#	Article	IF	CITATIONS
19	A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes and Development, 2017, 31, 353-369.	5.9	168
20	<scp>RPA</scp> activates the <scp>XPF</scp> ― <scp>ERCC</scp> 1 endonuclease to initiate processing of <scp>DNA</scp> interstrand crosslinks. EMBO Journal, 2017, 36, 2047-2060.	7.8	50
21	Third EU-US workshop on "Nucleotide excision repair and crosslink repair—From molecules to mankindâ€, Smolenice Castle, Slovak Republic, May 7th–11th 2017. DNA Repair, 2017, 58, 62-66.	2.8	0
22	Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes. PLoS ONE, 2017, 12, e0179278.	2.5	36
23	Cephalosporins inhibit human metallo β-lactamase fold DNA repair nucleases SNM1A and SNM1B/apollo. Chemical Communications, 2016, 52, 6727-6730.	4.1	28
24	Mgm101: A double-duty Rad52-like protein. Cell Cycle, 2016, 15, 3169-3176.	2.6	7
25	The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Trends in Biochemical Sciences, 2016, 41, 338-355.	7.5	87
26	EXD2 promotes homologous recombination by facilitating DNA end resection. Nature Cell Biology, 2016, 18, 271-280.	10.3	61
27	Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Antimicrobial Agents and Chemotherapy, 2016, 60, 142-150.	3.2	134
28	CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Research, 2015, 43, 247-258.	14.5	48
29	The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Research, 2015, 43, 11047-11060.	14.5	32
30	XPF protein levels determine sensitivity of malignant melanoma cells to oxaliplatin chemotherapy: Suitability as a biomarker for patient selection. International Journal of Cancer, 2014, 134, 1495-1503.	5.1	20
31	A Small Molecule Inhibitor of the BLM Helicase Modulates Chromosome Stability in Human Cells. Chemistry and Biology, 2013, 20, 55-62.	6.0	128
32	A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring. Cell Reports, 2013, 5, 1714-1724.	6.4	18
33	Repair of DNA Interstrand Cross-links Produced by Cancer Chemotherapeutic Drugs. , 2013, , 1-23.		0
34	A prototypical Fanconi anemia pathway in lower eukaryotes?. Cell Cycle, 2012, 11, 3739-3744.	2.6	26
35	Characterization of the Human SNM1A and SNM1B/Apollo DNA Repair Exonucleases. Journal of Biological Chemistry, 2012, 287, 26254-26267.	3.4	44
36	Components of a Fanconi-Like Pathway Control Pso2-Independent DNA Interstrand Crosslink Repair in Yeast. PLoS Genetics, 2012, 8, e1002884.	3.5	41

3

Peter J Mchugh

#	Article	IF	CITATIONS
37	Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair. Cell Cycle, 2011, 10, 3999-4008.	2.6	53
38	Human HEL308 Localizes to Damaged Replication Forks and Unwinds Lagging Strand Structures. Journal of Biological Chemistry, 2011, 286, 15832-15840.	3.4	27
39	Human SNM1A and XPF–ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes and Development, 2011, 25, 1859-1870.	5.9	125
40	The SNM1/Pso2 family of ICL repair nucleases: From yeast to man. Environmental and Molecular Mutagenesis, 2010, 51, 635-645.	2.2	43
41	XPF-ERCC1 Participates in the Fanconi Anemia Pathway of Cross-Link Repair. Molecular and Cellular Biology, 2009, 29, 6427-6437.	2.3	121
42	Apollo: A healer of the genome?. Cell Cycle, 2009, 8, 1979-1983.	2.6	3
43	Apollo: a healer of the genome?. Cell Cycle, 2009, 8, 1980-1.	2.6	1
44	Human SNM1A suppresses the DNA repair defects of yeast pso2 mutants. DNA Repair, 2008, 7, 230-238.	2.8	51
45	DNA interstrand cross-link repair inSaccharomyces cerevisiae. FEMS Microbiology Reviews, 2007, 31, 109-133.	8.6	73
46	DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase ζ. EMBO Journal, 2006, 25, 1285-1294.	7.8	149
47	DNA Interstrand Cross-Link Repair in the Cell Cycle: A Critical Role for Polymerase ζ in G ₁ Phase. Cell Cycle, 2006, 5, 1044-1047.	2.6	52
48	DNA Interstrand Cross-Link Repair in the Saccharomyces cerevisiae Cell Cycle: Overlapping Roles for PSO2 (SNM1) with MutS Factors and EXO1 during S Phase. Molecular and Cellular Biology, 2005, 25, 2297-2309.	2.3	68
49	SJG-136 (NSC 694501), a Novel Rationally Designed DNA Minor Groove Interstrand Cross-Linking Agent with Potent and Broad Spectrum Antitumor Activity. Cancer Research, 2004, 64, 6693-6699.	0.9	123
50	<i>Schizosaccharomyces pombe</i> Checkpoint Response to DNA Interstrand Cross-Links. Molecular and Cellular Biology, 2003, 23, 4728-4737.	2.3	33
51	Defects in interstrand cross-link uncoupling do not account for the extreme sensitivity of ERCC1 and XPF cells to cisplatin. Nucleic Acids Research, 2002, 30, 3848-3856.	14.5	105
52	Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncology, The, 2001, 2, 483-490.	10.7	352
53	Repair of Intermediate Structures Produced at DNA Interstrand Cross-Links in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2000, 20, 3425-3433.	2.3	145
54	Defining the Roles of Nucleotide Excision Repair and Recombination in the Repair of DNA Interstrand Cross-Links in Mammalian Cells. Molecular and Cellular Biology, 2000, 20, 7980-7990.	2.3	401

#	Article	IF	CITATIONS
55	Excision repair of nitrogen mustard-DNA adducts in Saccharomyces cerevisiae. Nucleic Acids Research, 1999, 27, 3259-3266.	14.5	57
56	Characterization of DNA Damage Inflicted by Free Radicals from a Mutagenic Sunscreen Ingredient and Its Location Using an <i>in vitro</i> Genetic Reversion Assay. Photochemistry and Photobiology, 1997, 66, 276-281.	2.5	53