

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548892/publications.pdf Version: 2024-02-01

XIANC

#	Article	IF	CITATIONS
1	Red-light excited efficient metal-free near-infrared room-temperature phosphorescent films. National Science Review, 2022, 9, nwab085.	9.5	63
2	Emissionâ€Tunable Roomâ€Temperature Phosphorescent Polymers Based on Dynamic Reversible Supramoleculeâ€Mediated Photocrosslinking. Advanced Optical Materials, 2022, 10, 2101646.	7.3	21
3	Red-light emissive phosphorescent polymers based on X-shaped single benzene. Dyes and Pigments, 2022, 198, 110005.	3.7	9
4	A Universal Strategy for Tunable Persistent Luminescent Materials via Radiative Energy Transfer. Angewandte Chemie - International Edition, 2022, 61, e202115748.	13.8	70
5	Influence of the alkyl side chain length on the room-temperature phosphorescence of organic copolymers. Chinese Chemical Letters, 2022, 33, 2965-2968.	9.0	24
6	A Universal Strategy for Tunable Persistent Luminescent Materials via Radiative Energy Transfer. Angewandte Chemie, 2022, 134, .	2.0	6
7	Photoresponsive DNA materials and their applications. Chemical Society Reviews, 2022, 51, 720-760.	38.1	48
8	Stimuliâ€Responsive Polymers with Roomâ€Temperature Phosphorescence. Chemistry - A European Journal, 2022, 28, e202104131.	3.3	38
9	Visible Light Activated Organic Roomâ€Temperature Phosphorescence Based on Tripletâ€ŧo‣inglet Försterâ€Resonance Energy Transfer. Advanced Optical Materials, 2022, 10, .	7.3	29
10	Frontispiece: Stimuliâ€Responsive Polymers with Roomâ€Temperature Phosphorescence. Chemistry - A European Journal, 2022, 28, .	3.3	3
11	Machine learning-assisted improving gas sensor array recognition ability. Chinese Journal of Analytical Chemistry, 2022, 50, 100087.	1.7	2
12	Multifunctional Host Polymers Assist Au Nanoclusters Achieve High Quantum Yield and Mitochondrial Imaging. ACS Applied Materials & Interfaces, 2022, 14, 2023-2028.	8.0	20
13	Reversible Multilevel Stimuliâ€Responsiveness and Multicolor Roomâ€Temperature Phosphorescence Emission Based on a Singleâ€Component System. Angewandte Chemie - International Edition, 2022, 61, .	13.8	75
14	Reversible Multilevel Stimuliâ€Responsiveness and Multicolor Roomâ€Temperature Phosphorescence Emission Based on a Singleâ€Component System. Angewandte Chemie, 2022, 134, .	2.0	6
15	Highly efficient organic long persistent luminescence based on host–guest doping systems. Chemical Science, 2022, 13, 8412-8416.	7.4	14
16	Tunableâ€Emission Amorphous Roomâ€īemperature Phosphorescent Polymers Based on Thermoreversible Dynamic Covalent Bonds. Angewandte Chemie, 2021, 133, 3501-3505.	2.0	15
17	Tunableâ€Emission Amorphous Roomâ€Temperature Phosphorescent Polymers Based on Thermoreversible Dynamic Covalent Bonds. Angewandte Chemie - International Edition, 2021, 60, 3459-3463.	13.8	102
18	Roomâ€Temperature Phosphorescence Enabled through Nacreâ€Mimetic Nanocomposite Design. Advanced Materials, 2021, 33, e2005973.	21.0	87

#	Article	IF	CITATIONS
19	Realâ€Time Visual Monitoring of Kinetically Controlled Selfâ€Assembly. Angewandte Chemie - International Edition, 2021, 60, 2855-2860.	13.8	76
20	Realâ€Time Visual Monitoring of Kinetically Controlled Selfâ€Assembly. Angewandte Chemie, 2021, 133, 2891-2896.	2.0	27
21	DNAzyme- and light-induced dissipative and gated DNA networks. Chemical Science, 2021, 12, 11204-11212.	7.4	32
22	Room-temperature phosphorescence of a water-soluble supramolecular organic framework. Chemical Communications, 2021, 57, 10178-10181.	4.1	19
23	Achieving visible-light-excited organic room-temperature phosphorescence by manipulating p–π conjugation. Journal of Materials Chemistry C, 2021, 9, 14623-14627.	5.5	8
24	Reversible room-temperature phosphorescence in response to light stimulation based on a photochromic copolymer. Chemical Communications, 2021, 57, 3154-3157.	4.1	16
25	Recent progress on pure organic room temperature phosphorescent polymers. Aggregate, 2021, 2, e38.	9.9	119
26	Highly Efficient Roomâ€∓emperature Phosphorescence Based on Singleâ€Benzene Structure Molecules and Photoactivated Luminescence with Afterglow. Advanced Functional Materials, 2021, 31, 2010659.	14.9	140
27	Lightâ€Responsive Circularly Polarized Luminescence Polymers with INHIBIT Logic Function. Advanced Optical Materials, 2021, 9, 2100135.	7.3	21
28	Emission enhancement and self-healing of a hybrid hydrogel employing Au nanoclusters as cross-linkers. Dyes and Pigments, 2021, 188, 109211.	3.7	10
29	Engendering persistent organic room temperature phosphorescence by trace ingredient incorporation. Science Advances, 2021, 7, .	10.3	135
30	A Universal Strategy for Organic Fluid Phosphorescence Materials**. Angewandte Chemie, 2021, 133, 18705-18708.	2.0	16
31	A Universal Strategy for Organic Fluid Phosphorescence Materials**. Angewandte Chemie - International Edition, 2021, 60, 18557-18560.	13.8	72
32	Triboluminescence and Selective Hydrogen-Bond Responsiveness of Thiochromanone Derivative. , 2021, 3, 1300-1306.		11
33	Activating Roomâ€Temperature Phosphorescence of Organic Luminophores via External Heavyâ€Atom Effect and Rigidity of Ionic Polymer Matrix**. Angewandte Chemie, 2021, 133, 19887-19891.	2.0	23
34	Activating Roomâ€Temperature Phosphorescence of Organic Luminophores via External Heavyâ€Atom Effect and Rigidity of Ionic Polymer Matrix**. Angewandte Chemie - International Edition, 2021, 60, 19735-19739.	13.8	131
35	Visually Monitoring the Compactness of Polymer Matrixes Coded by Disparate Luminescence. ACS Applied Materials & Interfaces, 2021, 13, 43473-43479.	8.0	16
36	Synergetic enhancement of room-temperature phosphorescence <i>via</i> water molecules as a hydrogen bonding bridge. Journal of Materials Chemistry C, 2021, 9, 16581-16586.	5.5	16

#	Article	IF	CITATIONS
37	A Simple, Easy Preparation and Tunable Strategy for Preparing Organic Room-Temperature Phosphorescence. Langmuir, 2021, 37, 14229-14236.	3.5	12
38	Local Constraints on Junctions to Strengthen Near-Infrared Phosphorescence of Organic Dyes. Journal of Physical Chemistry Letters, 2021, 12, 11919-11925.	4.6	2
39	Tunable Fluorescence and Room-Temperature Phosphorescence from Multiresponsive Pure Organic Copolymers. Industrial & Engineering Chemistry Research, 2020, 59, 1578-1583.	3.7	27
40	A facile way to obtain near-infrared room-temperature phosphorescent soft materials based on Bodipy dyes. Chemical Science, 2020, 11, 482-487.	7.4	99
41	Molecular Engineering for Metalâ€Free Amorphous Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 11206-11216.	13.8	322
42	Molecular Engineering for Metalâ€Free Amorphous Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 11302-11312.	2.0	65
43	Visibleâ€Lightâ€Excited Roomâ€Temperature Phosphorescence in Water by Cucurbit[8]urilâ€Mediated Supramolecular Assembly. Angewandte Chemie, 2020, 132, 10014-10019.	2.0	178
44	Visibleâ€Lightâ€Excited Roomâ€Temperature Phosphorescence in Water by Cucurbit[8]urilâ€Mediated Supramolecular Assembly. Angewandte Chemie - International Edition, 2020, 59, 9928-9933.	13.8	273
45	Phosphorus-containing amorphous pure organic room-temperature phosphorescent materials. European Polymer Journal, 2020, 141, 110072.	5.4	4
46	Conformation-Dependent Phosphorescence of Galactose-Decorated Phosphors and Assembling-Induced Phosphorescence Enhancement. ACS Applied Materials & Interfaces, 2020, 12, 52059-52069.	8.0	18
47	Achieving room temperature phosphorescence from organic small molecules on amino acid skeleton. Chinese Chemical Letters, 2020, 31, 2929-2932.	9.0	19
48	One-pot synthesis of β-cyclodextrin modified Au nanoclusters with near-infrared emission. Chemical Communications, 2020, 56, 5580-5583.	4.1	28
49	Circularly polarized luminescence induced by excimer based on pyrene-modified binaphthol. Chinese Chemical Letters, 2020, 31, 2921-2924.	9.0	17
50	Cucurbiturils brighten Au nanoclusters in water. Chemical Science, 2020, 11, 3531-3537.	7.4	71
51	Facile Synthesis of Nitrogen-Containing Six-Membered Benzofuzed Phenophosphazinine Oxides and Studies of the Photophysical Properties. Journal of Organic Chemistry, 2020, 85, 3879-3886.	3.2	7
52	Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. Chinese Chemical Letters, 2019, 30, 1809-1814.	9.0	105
53	Introduction of an isoxazoline unit to the β-position of porphyrin via regioselective 1,3-dipolar cycloaddition reaction. Beilstein Journal of Organic Chemistry, 2019, 15, 1434-1440.	2.2	5
54	Employing Lactam Copolymerization Strategy to Effectively Achieve Pure Organic Roomâ€Temperature Phosphorescence in Amorphous State. Advanced Optical Materials, 2019, 7, 1901277.	7.3	27

#	Article	IF	CITATIONS
55	UV Rewritable Hybrid Graphene/Phosphor p–n Junction Photodiode. ACS Applied Materials & Interfaces, 2019, 11, 43351-43358.	8.0	5
56	Metal-Free Room-Temperature Phosphorescent Systems for Pure White-Light Emission and Latent Fingerprint Visualization. Industrial & Engineering Chemistry Research, 2019, 58, 7778-7785.	3.7	34
57	Humidity- and Temperature-Tunable Multicolor Luminescence of Cucurbit[8]uril-Based Supramolecular Assembly. ACS Applied Materials & Interfaces, 2019, 11, 14399-14407.	8.0	55
58	Stimuliâ€Responsive Copolymer and Uniform Polymeric Nanoparticles with Photochromism and Switchable Emission. ChemPhotoChem, 2019, 3, 568-574.	3.0	7
59	Heavy-atom-free amorphous materials with facile preparation and efficient room-temperature phosphorescence emission. Chemical Communications, 2019, 55, 5355-5358.	4.1	24
60	Pure organic room-temperature phosphorescent N-allylquinolinium salts as anti-counterfeiting materials. Chinese Chemical Letters, 2019, 30, 1387-1389.	9.0	22
61	Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence. Accounts of Chemical Research, 2019, 52, 738-748.	15.6	512
62	Photoâ€Modulating Multicolor Photoluminescence Including Whiteâ€Light Emission from a Photochromic Copolymer. Macromolecular Rapid Communications, 2019, 40, 1800751.	3.9	36
63	Tunable Photoluminescence Including Whiteâ€Light Emission Based on Noncovalent Interactionâ€Locked <i>N</i> , <i>N</i> ,i>@2â€Disubstituted Dihydrodibenzo[<i>a</i> , <i>c</i>]phenazines. Advanced Optical Materials, 2018, 6, 1800074.	7.3	47
64	Photo-controlled fluorescence on/off switching of a pseudo[3]rotaxane between an AIE-active pillar[5]arene host and a photochromic bithienylethene guest. Chemical Communications, 2018, 54, 2405-2408.	4.1	77
65	Multicolor Photoluminescence of a Hybrid Film via the Dual-Emitting Strategy of an Inorganic Fluorescent Au Nanocluster and an Organic Room-Temperature Phosphorescent Copolymer. Industrial & Engineering Chemistry Research, 2018, 57, 2866-2872.	3.7	33
66	Amorphous Metal-Free Room-Temperature Phosphorescent Small Molecules with Multicolor Photoluminescence via a Host–Guest and Dual-Emission Strategy. Journal of the American Chemical Society, 2018, 140, 1916-1923.	13.7	481
67	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie, 2018, 130, 11020-11024.	2.0	94
68	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie - International Edition, 2018, 57, 10854-10858.	13.8	373
69	Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54, 4037-4040.	4.1	11
70	Host-guest supramolecular amphiphile enhanced photodecomposition with responsive room-temperature phosphorescence signals. Dyes and Pigments, 2018, 148, 306-312.	3.7	16
71	A linear supramolecular polymer based on host-guest recognition and metal-ligand coordination. Chinese Chemical Letters, 2018, 29, 970-972.	9.0	17
72	A self-assembled photoresponsive gel consisting of chiral nanofibers. Beilstein Journal of Organic Chemistry, 2018, 14, 1994-2001.	2.2	4

#	Article	IF	CITATIONS
73	White-light emission from a single organic compound with unique self-folded conformation and multistimuli responsiveness. Chemical Science, 2018, 9, 5709-5715.	7.4	146
74	Whiteâ€Lightâ€Emitting Materials Constructed from Supramolecular Approaches. Advanced Optical Materials, 2018, 6, 1800273.	7.3	87
75	Innentitelbild: Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission (Angew. Chem. 34/2018). Angewandte Chemie, 2018, 130, 10936-10936.	2.0	0
76	Synthesis and properties of photochromic spirooxazine with aggregation-induced emission fluorophores polymeric nanoparticles. Dyes and Pigments, 2017, 142, 481-490.	3.7	42
77	A photocontrollable supramolecular hyperbranched polymer based on host-guest recognition in aqueous solution. Dyes and Pigments, 2017, 143, 211-216.	3.7	12
78	Efficient end-to-end assembly of gold nanorods via cyclodextrin-bisphenol A based supramolecular linker. Dyes and Pigments, 2017, 144, 168-172.	3.7	9
79	Reversible end-to-end assembly and disassembly of gold nanorods based on pH-responsive host-guest interaction. Dyes and Pigments, 2017, 145, 385-390.	3.7	14
80	Room-temperature phosphorescence of cucurbit[7]uril recognized naphthalimide derivative. Dyes and Pigments, 2017, 142, 300-305.	3.7	39
81	End-to-end assembly and disassembly of gold nanorods based on photo-responsive host–guest interaction. Chemical Communications, 2017, 53, 4577-4580.	4.1	43
82	Amorphous 2-Bromocarbazole Copolymers with Efficient Room-Temperature Phosphorescent Emission and Applications as Encryption Ink. Industrial & Engineering Chemistry Research, 2017, 56, 3123-3128.	3.7	55
83	Synthesis and properties of tetraphenylethylene derivatived diarylethene with photochromism and aggregation-induced emission. Dyes and Pigments, 2017, 139, 118-128.	3.7	64
84	Tunable emission of a tetraphenylethylene copolymer via polymer matrix assisted and aggregation-induced emission. Polymer Chemistry, 2017, 8, 4835-4841.	3.9	25
85	A Cucurbit[7]uril Based Molecular Shuttle Encoded by Visible Roomâ€Temperature Phosphorescence. ChemPhysChem, 2016, 17, 1934-1938.	2.1	78
86	New π-conjugated cyanostilbene derivatives: Synthesis, characterization and aggregation-induced emission. Chinese Chemical Letters, 2016, 27, 1592-1596.	9.0	20
87	Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness. Polymer Chemistry, 2016, 7, 3989-3992.	3.9	83
88	A room temperature phosphorescence encoding [2]rotaxane molecular shuttle. Chemical Science, 2016, 7, 4582-4588.	7.4	61
89	Novel organogel harnessing Excited-State Intramolecular Proton Transfer process with aggregation induced emission and photochromism. Dyes and Pigments, 2016, 132, 48-57.	3.7	28
90	Recent Progress in Photoswitchable Supramolecular Selfâ€Assembling Systems. Advanced Optical Materials, 2016, 4, 1322-1349.	7.3	149

#	Article	IF	CITATIONS
91	Supramolecular Assemblies: Photoresponsive Supramolecular Assemblies Based on a C3-Symmetric Benzene-1,3,5-tricarboxamide-Anchored Diarylethene (Advanced Optical Materials 6/2016). Advanced Optical Materials, 2016, 4, 810-810.	7.3	0
92	Multicolor Photoluminescence Including White-Light Emission by a Single Host–Guest Complex. Journal of the American Chemical Society, 2016, 138, 13541-13550.	13.7	233
93	Amorphous, Efficient, Roomâ€Temperature Phosphorescent Metalâ€Free Polymers and Their Applications as Encryption Ink. Advanced Optical Materials, 2016, 4, 1397-1401.	7.3	183
94	Photoresponsive Supramolecular Assemblies Based on a C ₃ ‣ymmetric Benzeneâ€1,3,5â€tricarboxamideâ€Anchored Diarylethene. Advanced Optical Materials, 2016, 4, 840-847.	7.3	36
95	The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications. Chinese Chemical Letters, 2016, 27, 518-522.	9.0	8
96	Photo-responsive chiral cyclic molecular switches based on stiff stilbene. Dyes and Pigments, 2016, 125, 259-265.	3.7	15
97	Preparation and properties of organo-soluble tetraphenylethylene monolayer-protected gold nanorods. Dyes and Pigments, 2016, 124, 1-5.	3.7	4
98	A Hybrid Supramolecular Polymeric Hydrogel with Rapid Selfâ€Healing Property. Chemistry - an Asian Journal, 2015, 10, 2352-2355.	3.3	32
99	Bis- <i>p</i> -Sulfonatocalix[4]arene-Based Supramolecular Amphiphiles with an Emergent Lower Critical Solution Temperature Behavior in Aqueous Solution and Hydrogel. Langmuir, 2015, 31, 13647-13654.	3.5	51
100	Photoresponsive Host–Guest Functional Systems. Chemical Reviews, 2015, 115, 7543-7588.	47.7	728
101	Visible-Light-Dependent Photocyclization: Design, Synthesis, and Properties of a Cyanine-Based Dithienylethene. Journal of Organic Chemistry, 2015, 80, 7830-7835.	3.2	55
102	A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness. Chinese Chemical Letters, 2015, 26, 867-871.	9.0	29
103	A Rapidly Selfâ€Healing Supramolecular Polymer Hydrogel with Photostimulated Roomâ€Temperature Phosphorescence Responsiveness. Angewandte Chemie - International Edition, 2014, 53, 14149-14152.	13.8	305
104	Stimuli-Responsive Supramolecular Polymers in Aqueous Solution. Accounts of Chemical Research, 2014, 47, 1971-1981.	15.6	527
105	Photo-responsive spiropyran monolayer protected gold nanorod. Dyes and Pigments, 2014, 103, 89-94.	3.7	16
106	Multistate self-assembled micro-morphology transitions controlled by host–guest interactions. Chemical Communications, 2014, 50, 1567.	4.1	53
107	Aggregation-induced emission encoding supramolecular polymers based on controllable sulfonatocalixarene recognition in aqueous solution. Journal of Materials Chemistry C, 2014, 2, 5155.	5.5	93
108	INHIBIT logic operations based on light-driven β-cyclodextrin pseudo[1]rotaxane with room temperature phosphorescence addresses. Chemical Communications, 2014, 50, 3224-3226.	4.1	80

#	Article	IF	CITATIONS
109	A photochromic supramolecular polymer based on bis-p-sulfonatocalix[4]arene recognition in aqueous solution. Chemical Communications, 2014, 50, 7166.	4.1	61
110	Light-Driven Linear Helical Supramolecular Polymer Formed by Molecular-Recognition-Directed Self-Assembly of Bis(<i>p</i> -sulfonatocalix[4]arene) and Pseudorotaxane. Journal of the American Chemical Society, 2013, 135, 5990-5993.	13.7	247
111	Novel supramolecular CT polymer employing disparate pseudorotaxanes asÂrelevant monomers. Polymer, 2013, 54, 2506-2510.	3.8	12
112	Photo-responsive pseudo[n]rotaxanes based on disparate hetero-macrocycle host combination. Tetrahedron, 2013, 69, 1069-1073.	1.9	5
113	Porphyrin metal complex monolayer-protected gold nanorods: A parallel facile synthesis and self-assembly. Journal of Colloid and Interface Science, 2013, 398, 1-6.	9.4	26
114	Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored-Monolayer-Protected Gold Nanorods. European Journal of Inorganic Chemistry, 2013, 2013, 2682-2686.	2.0	15
115	A Dual-Modality Photoswitchable Supramolecular Polymer. Langmuir, 2013, 29, 5345-5350.	3.5	108
116	Sol–gel conversion based on photoswitching between noncovalently and covalently linked netlike supramolecular polymers. Chemical Communications, 2013, 49, 9800.	4.1	106
117	Photophysical Properties and Conformational Effects on the Circular Dichroism of an Azobenzene–Cyclodextrin [1]Rotaxane and Its Molecular Components. Chemistry - A European Journal, 2013, 19, 3131-3138.	3.3	26
118	Controllable Self-Assembling of Gold Nanorods via On and Off Supramolecular Noncovalent Interactions. Langmuir, 2012, 28, 16263-16267.	3.5	23
119	Chiral Supramolecular Switches Based on (<i>R</i>)â€Binaphthalene–Bipyridinium Guests and Cucurbituril Hosts. Chemistry - A European Journal, 2012, 18, 16911-16921.	3.3	53
120	Reversible modulation of helicity in a binaphthyl–bipyridinium species and its cucurbit[8]uril complexes. Chemical Communications, 2012, 48, 7577.	4.1	43
121	Synthesis of ru(bpy)3-viologen and its complex included by p-sulfonatocalix[4]arene in a U-type binding manner. Dyes and Pigments, 2012, 95, 436-442.	3.7	5
122	Competitive threading of Ru(bpy)3 stopped "V―type pseudo[2]rotaxane-like supramolecules. Dalton Transactions, 2011, 40, 12033.	3.3	7
123	Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers. Polymer Chemistry, 2011, 2, 1068-1070.	3.9	83
124	Vinylbipyridinium dication–triphenylureidocalix[6]arene pseudorotaxane. Tetrahedron Letters, 2011, 52, 5960-5962.	1.4	7
125	Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane. Chemical Communications, 2011, 47, 3559.	4.1	63
126	A light-powered stretch–contraction supramolecular system based on cobalt coordinated [1]rotaxane. Organic and Biomolecular Chemistry, 2011, 9, 1126-1132.	2.8	50

#	Article	IF	CITATIONS
127	Dual-controllable stepwise supramolecular interconversions. Chemical Communications, 2010, 46, 2587.	4.1	67
128	Bright functional rotaxanes. Chemical Society Reviews, 2010, 39, 70-80.	38.1	305
129	Address-crossing digital information processing on a self-aggregatable cyclodextrin derivative based nanosystem. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 278-291.	0.4	5
130	A new thermo- and photo-driven [2]rotaxane. Tetrahedron Letters, 2009, 50, 597-600.	1.4	21
131	Photolockable Ratiometric Viscosity Sensitivity of Cyclodextrin Polypseudorotaxane with Light-Active Rotor Graft. Langmuir, 2009, 25, 3482-3486.	3.5	69
132	Switchable V-Type [2]Pseudorotaxanes. Organic Letters, 2009, 11, 3234-3237.	4.6	71
133	An efficient multiple-mode molecular logic system for pH, solvent polarity, and Hg2+ ions. Tetrahedron, 2008, 64, 8515-8521.	1.9	49
134	A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chemical Communications, 2007, , 1409.	4.1	87
135	Effective Enhancement of Fluorescence Signals in Rotaxaneâ€Doped Reversible Hydrosol–Gel Systems. Chemistry - A European Journal, 2007, 13, 9216-9222.	3.3	93
136	A Light-Driven Pseudo[4]rotaxane Encoded by Induced Circular Dichroism in a Hydrogel. Advanced Functional Materials, 2007, 17, 829-837.	14.9	105
137	Disparate orientation of [1]rotaxanes. Tetrahedron Letters, 2007, 48, 7112-7116.	1.4	37
138	Unidirectional Threading Synthesis of Isomer-Free [2]Rotaxanes. Chemistry - A European Journal, 2006, 12, 1088-1096.	3.3	70
139	A [3]Rotaxane with Three Stable States That Responds to Multiple-Inputs and Displays Dual Fluorescence Addresses. Chemistry - A European Journal, 2005, 11, 5929-5937.	3.3	104