Juan R. GonzÃ;lez-Velasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548766/publications.pdf

Version: 2024-02-01

224 papers

7,281 citations

44069 48 h-index ⁸²⁵⁴⁷ **72**

224 all docs

224 docs citations

times ranked

224

5235 citing authors

g-index

#	Article	IF	CITATIONS
1	Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Applied Catalysis B: Environmental, 2020, 265, 118538.	20.2	199
2	Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 2018, 238, 393-403.	20.2	175
3	Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NOx with NH3. Applied Catalysis B: Environmental, 2014, 147, 420-428.	20.2	163
4	Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Applied Catalysis B: Environmental, 1998, 19, 189-197.	20.2	135
5	Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions. Applied Catalysis B: Environmental, 2014, 158-159, 190-201.	20.2	134
6	Enhancement of the catalytic oxidation of hydrogen-lean chlorinated VOCs in the presence of hydrogen-supplying compounds. Applied Catalysis B: Environmental, 2000, 24, 33-43.	20.2	132
7	Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Applied Catalysis A: General, 2013, 466, 9-20.	4.3	126
8	Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Applied Catalysis B: Environmental, 2017, 213, 198-210.	20.2	124
9	Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 2000, 24, 233-242.	20.2	120
10	Enhanced activity of zeolites by chemical dealumination for chlorinated VOC abatement. Applied Catalysis B: Environmental, 2003, 41, 31-42.	20.2	120
11	Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions. Applied Catalysis B: Environmental, 2006, 65, 191-200.	20.2	119
12	Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catalysis Today, 2020, 356, 419-432.	4.4	111
13	Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3. Journal of CO2 Utilization, 2019, 34, 576-587.	6.8	109
14	Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Applied Catalysis B: Environmental, 2016, 180, 210-218.	20.2	101
15	Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts. Applied Catalysis B: Environmental, 2019, 256, 117845.	20.2	100
16	Contribution of cerium/zirconium mixed oxides to the activity of a new generation of TWC. Applied Catalysis B: Environmental, 1999, 22, 167-178.	20.2	98
17	Comparative study of the oxidative decomposition of trichloroethylene over H-type zeolites under dry and humid conditions. Applied Catalysis B: Environmental, 2001, 30, 303-313.	20.2	97
18	Thermal aging of Pd/Pt/Rh automotive catalysts under a cycled oxidizing–reducing environment. Catalysis Today, 2000, 59, 395-402.	4.4	95

#	Article	IF	Citations
19	Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Applied Catalysis B: Environmental, 2009, 88, 533-541.	20.2	95
20	Combustion of aliphatic C2 chlorohydrocarbons over ceria–zirconia mixed oxides catalysts. Applied Catalysis A: General, 2004, 269, 147-155.	4.3	94
21	Kinetics of the Low-Temperature WGS Reaction over a CuO/ZnO/Al2O3 Catalyst. Industrial & Description of the Low-Temperature WGS Reaction over a CuO/ZnO/Al2O3 Catalyst. Industrial & Description over	3.7	90
22	State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chemical Papers, 2014, 68, .	2.2	85
23	Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane. Catalysis Today, 2000, 62, 367-377.	4.4	83
24	MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams. Applied Catalysis B: Environmental, 2007, 70, 532-541.	20.2	79
25	On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts. Journal of Molecular Catalysis A, 2007, 278, 181-188.	4.8	78
26	Synthesis, characterisation and behaviour of Co/hydroxyapatite catalysts in the oxidation of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2016, 190, 125-136.	20.2	78
27	Zr promotion effect in CO2 methanation over ceria supported nickel catalysts. International Journal of Hydrogen Energy, 2019, 44, 1710-1719.	7.1	78
28	Structure of Mnâ€"Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons. Chemosphere, 2007, 68, 1004-1012.	8.2	71
29	Cu-zeolite catalysts for NO x removal by selective catalytic reduction with NH 3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems. Applied Catalysis B: Environmental, 2016, 187, 419-427.	20.2	71
30	Low-temperature deep oxidation of dichloromethane and trichloroethylene by H-ZSM-5-supported manganese oxide catalysts. Journal of Catalysis, 2003, 218, 148-154.	6.2	70
31	Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. Journal of Catalysis, 2012, 296, 165-174.	6.2	70
32	Behavior of Coprecipitated NiAl ₂ O ₄ /Al ₂ O ₃ Catalysts for Low-Temperature Methane Steam Reforming. Energy & Energy	5.1	65
33	Non-isothermal analysis of the kinetics of the combustion of carbonaceous materials. Journal of Thermal Analysis and Calorimetry, 2005, 80, 65-69.	3.6	64
34	Selective CO oxidation over CeXZr1â^'XO2-supported Pt catalysts. Catalysis Today, 2006, 116, 391-399.	4.4	62
35	Influence of Ca/P ratio on the catalytic performance of Ni/hydroxyapatite samples in dry reforming of methane. Applied Catalysis A: General, 2019, 580, 34-45.	4.3	62
36	Catalytic oxidation of aliphatic chlorinated volatile organic compounds over Pt/H-BETA zeolite catalyst under dry and humid conditions. Catalysis Today, 2005, 107-108, 200-207.	4.4	61

#	Article	IF	CITATIONS
37	Pervaporation of ethanolâ€"water mixtures through poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes. Desalination, 2002, 149, 61-65.	8.2	59
38	Influence of water and hydrocarbon processed in feedstream on the three-way behaviour of platinum-alumina catalysts. Applied Catalysis B: Environmental, 1997, 12, 61-79.	20.2	58
39	Optimization of process parameters on the extrusion of honeycomb shaped monolith of H-ZSM-5 zeolite. Chemical Engineering Journal, 2010, 162, 415-423.	12.7	57
40	MgO/NiAl2O4 as a new formulation of reforming catalysts: Tuning the surface properties for the enhanced partial oxidation of methane. Applied Catalysis B: Environmental, 2016, 199, 372-383.	20.2	57
41	Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. Applied Catalysis A: General, 2004, 271, 39-46.	4.3	56
42	A shrinking core model for the alkaline hydrolysis of PET assisted by tributylhexadecylphosphonium bromide. Chemical Engineering Journal, 2009, 146, 287-294.	12.7	56
43	Cu-zeolite NH 3 -SCR catalysts for NO x removal in the combined NSR–SCR technology. Chemical Engineering Journal, 2012, 207-208, 10-17.	12.7	56
44	Behaviour of Rh supported on hydroxyapatite catalysts in partial oxidation and steam reforming of methane: On the role of the speciation of the Rh particles. Applied Catalysis A: General, 2018, 556, 191-203.	4.3	56
45	Dealuminated Y Zeolites for Destruction of Chlorinated Volatile Organic Compounds. Journal of Catalysis, 2002, 209, 145-150.	6.2	54
46	Synthesis of cordierite monolithic honeycomb by solid state reaction of precursor oxides. Journal of Materials Science, 1999, 34, 1999-2002.	3.7	52
47	Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction. Powder Technology, 2005, 153, 34-42.	4.2	52
48	Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides. Applied Catalysis A: General, 2006, 314, 54-63.	4.3	50
49	The reaction pathway and kinetic mechanism of the catalytic oxidation of gaseous lean TCE on Pd/alumina catalysts. Journal of Catalysis, 2003, 214, 130-135.	6.2	47
50	Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration. Applied Catalysis B: Environmental, 2017, 205, 310-318.	20.2	47
51	Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: Comparison among bulk, Al2O3-supported and Ce-doped catalysts. Applied Catalysis B: Environmental, 2018, 237, 844-854.	20.2	47
52	Oxidative destruction of dichloromethane over protonic zeolites. AICHE Journal, 2003, 49, 496-504.	3.6	46
53	Kinetic considerations of three-way catalysis in automobile exhaust converters. Applied Catalysis B: Environmental, 2001, 32, 243-256.	20.2	45
54	Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Applied Catalysis B: Environmental, 2005, 61, 150-158.	20.2	45

#	Article	IF	CITATIONS
55	Pt/Ce0.68Zr0.32O2Washcoated Monoliths for Automotive Emission Control. Industrial & Engineering Chemistry Research, 2003, 42, 311-317.	3.7	44
56	Enhanced coagulation under changing alkalinity-hardness conditions and its implications on trihalomethane precursors removal and relationship with UV absorbance. Separation and Purification Technology, 2007, 55, 368-380.	7.9	44
57	Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO ₂ Methanation. ChemCatChem, 2019, 11, 810-819.	3.7	44
58	A kinetic study of the combustion of porous synthetic soot. Chemical Engineering Journal, 2007, 129, 41-49.	12.7	43
59	Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NO containing exhaust gases from MWI plants: Effect of different metal cations. Applied Catalysis B: Environmental, 2016, 184, 238-245.	20.2	43
60	Gas-phase catalytic combustion of chlorinated VOC binary mixtures. Applied Catalysis B: Environmental, 2003, 45, 13-21.	20.2	41
61	Kinetics of Pd/alumina catalysed 1,2-dichloroethane gas-phase oxidation. Chemical Engineering Science, 2006, 61, 3564-3576.	3.8	41
62	CO elimination processes over promoter-free hydroxyapatite supported palladium catalysts. Applied Catalysis B: Environmental, 2017, 201, 189-201.	20.2	40
63	Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas. Catalysis Today, 2015, 254, 2-11.	4.4	39
64	Transformations of manganese oxides under different thermal conditions. Journal of Thermal Analysis, 1996, 47, 93-102.	0.6	38
65	A kinetic study of the depolymerisation of poly(ethylene terephthalate) by phase transfer catalysed alkaline hydrolysis. Journal of Chemical Technology and Biotechnology, 2009, 84, 92-99.	3.2	37
66	Catalytic activity of regenerated catalyst after the oxidation of 1,2-dichloroethane and trichloroethylene. Chemical Engineering Journal, 2014, 241, 200-206.	12.7	36
67	Effect of vanadia loading on acidic and redox properties of VOx/TiO2 for the simultaneous abatement of PCDD/Fs and NOx. Journal of Industrial and Engineering Chemistry, 2020, 81, 440-450.	5.8	36
68	Natural Organic Matter Adsorption onto Granular Activated Carbons: Implications in the Molecular Weight and Disinfection Byproducts Formation. Industrial & Engineering Chemistry Research, 2008, 47, 7868-7876.	3.7	35
69	Influence of ceria loading on the NOx storage and reduction performance of model Pt–Ba/Al2O3 NSR catalyst. Catalysis Today, 2015, 241, 133-142.	4.4	35
70	Nickel on silica systems. Surface features and their relationship with support, preparation procedure and nickel content. Applied Catalysis A: General, 1997, 162, 269-280.	4.3	34
71	Influence of the preparation procedure of NSR monolithic catalysts on the Pt-Ba dispersion and distribution. Applied Catalysis A: General, 2009, 363, 73-80.	4.3	34
72	Effect of operation conditions in the pervaporation of ethanol-water mixtures with poly(1-trimethylsilyl-1-propyne) membranes. Journal of Applied Polymer Science, 2004, 94, 1395-1403.	2.6	33

#	Article	IF	CITATIONS
7 3	Strontium doping and impregnation onto alumina improve the NOx storage and reduction capacity of LaCoO3 perovskites. Catalysis Today, 2019, 333, 208-218.	4.4	33
74	Effects of redox thermal treatments and feedstream composition on the activity of Ce/Zr mixed oxides for TWC applications. Applied Catalysis B: Environmental, 2000, 25, 19-29.	20.2	32
7 5	Catalytic combustion of chlorinated ethylenes over H-zeolites. Journal of Chemical Technology and Biotechnology, 2003, 78, 15-22.	3.2	32
76	Regeneration mechanism of a Lean NOx Trap (LNT) catalyst in the presence of NO investigated using isotope labelling techniques. Journal of Catalysis, 2012, 285, 177-186.	6.2	32
77	Steam gasification of printed circuit board from e-waste: Effect of coexisting nickel to hydrogen production. Fuel Processing Technology, 2015, 133, 69-74.	7.2	32
78	Steady-state NH 3 -SCR global model and kinetic parameter estimation for NO $^\times$ removal in diesel engine exhaust aftertreatment with Cu/chabazite. Catalysis Today, 2017, 296, 95-104.	4.4	32
79	The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter. Journal of Hazardous Materials, 2010, 181, 426-431.	12.4	31
80	Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-Dichloroethane. Catalysis Today, 2013, 213, 192-197.	4.4	31
81	Preparation and characterisation of CuO/Al2O3 films deposited onto stainless steel microgrids for CO oxidation. Applied Catalysis B: Environmental, 2014, 160-161, 629-640.	20.2	31
82	Influence of the calcination temperature on the activity of hydroxyapatite-supported palladium catalyst in the methane oxidation reaction. Applied Catalysis B: Environmental, 2020, 277, 119280.	20.2	31
83	Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis Today, 2011, 176, 357-360.	4.4	30
84	Control of NO storage and reduction in NSR bed for designing combined NSR–SCR systems. Catalysis Today, 2011, 172, 66-72.	4.4	30
85	Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact. Applied Materials Today, 2020, 19, 100591.	4.3	30
86	Bimodal effect of water on V2O5/TiO2 catalysts with different vanadium species in the simultaneous NO reduction and 1,2-dichlorobenzene oxidation. Chemical Engineering Journal, 2021, 417, 129013.	12.7	29
87	Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction. Applied Catalysis B: Environmental, 2022, 314, 121500.	20.2	29
88	Activity and Selectivity of Palladium Catalysts during the Liquid-Phase Hydrogenation of Phenol. Influence of Temperature and Pressure. Industrial & Engineering Chemistry Research, 1995, 34, 1031-1036.	3.7	28
89	Pd-doped or Pd impregnated 30% La0.7Sr0.3CoO3/Al2O3 catalysts for NOx storage and reduction. Applied Catalysis B: Environmental, 2019, 259, 118052.	20.2	27
90	Tuning operational conditions for efficient NOx storage and reduction over a Pt–Ba/Al2O3 monolith catalyst. Applied Catalysis B: Environmental, 2010, 96, 329-337.	20.2	26

#	Article	IF	CITATIONS
91	Tuning basicity of dual function materials widens operation temperature window for efficient CO2 adsorption and hydrogenation to CH4. Journal of CO2 Utilization, 2022, 58, 101922.	6.8	26
92	Selectivity of high surface area Ce0.68Zr0.32O2 for the new generation of TWC under environments with different redox character. Applied Catalysis B: Environmental, 2001, 33, 303-314.	20.2	25
93	FT-IR study of NO X storage mechanism over Pt/BaO/Al2O3 catalysts. Effect of the Pt–BaO interaction. Topics in Catalysis, 2007, 42-43, 37-41.	2.8	25
94	Performance of NO storage–reduction catalyst in the temperature–reductant concentration domain by response surface methodology. Chemical Engineering Journal, 2011, 169, 58-67.	12.7	25
95	On the effect of reduction and ageing on the TWC activity of Pd/Ce0.68Zr0.32O2 under simulated automotive exhausts. Catalysis Today, 2012, 180, 88-95.	4.4	25
96	Behaviour of nickel–alumina spinel (NiAl2O4) catalysts for isooctane steam reforming. International Journal of Hydrogen Energy, 2015, 40, 5281-5288.	7.1	25
97	Oxidative Steam Reforming and Steam Reforming of Methane, Isooctane, and <i>N</i> -Tetradecane over an Alumina Supported Spinel-Derived Nickel Catalyst. Industrial & Engineering Chemistry Research, 2016, 55, 3920-3929.	3.7	25
98	Mechanism and kinetics in catalytic hydrocracking of polystyrene in solution. Polymer Degradation and Stability, 2016, 124, 51-59.	5.8	25
99	Enhancing the CO2 methanation activity of \hat{I}^3 -Al2O3 supported mono- and bi-metallic catalysts prepared by glycerol assisted impregnation. Applied Catalysis B: Environmental, 2021, 296, 120322.	20.2	25
100	Oxidation of lean methane over cobalt catalysts supported on ceria/alumina. Applied Catalysis A: General, 2020, 591, 117381.	4.3	24
101	Alternate cycles of CO ₂ storage and <i>in situ</i> hydrogenation to CH ₄ on Ni–Na ₂ CO ₃ /Al ₂ O ₃ : influence of promoter addition and calcination temperature. Sustainable Energy and Fuels, 2021, 5, 1194-1210.	4.9	24
102	Preparation, activity and durability of promoted platinum catalysts for automotive exhaust control. Applied Catalysis B: Environmental, 1994, 3, 191-204.	20.2	23
103	Effect of thermal treatments on surface chemical distribution and catalyst activity in nickel on silica systems. Journal of Molecular Catalysis A, 1997, 120, 185-196.	4.8	23
104	Pervaporation of 50 wt % ethanol–water mixtures with poly(1-trimethylsilyl-1-propyne) membranes at high temperatures. Journal of Applied Polymer Science, 2007, 103, 2843-2848.	2.6	23
105	Controlling the selectivity to N2O over Pt/Ba/Al2O3 NOX storage/reduction catalysts. Catalysis Today, 2011, 176, 324-327.	4.4	23
106	Evaluation of Cu/SAPO-34 Catalysts Prepared by Solid-State and Liquid Ion-Exchange Methods for NO <i></i> <removal by="" nh<sub="">3-SCR. ACS Omega, 2019, 4, 14699-14713.</removal>	3.5	23
107	On the beneficial effect of MgO promoter on the performance of Co3O4/Al2O3 catalysts for combustion of dilute methane. Applied Catalysis A: General, 2019, 582, 117099.	4.3	23
108	Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combustion and Flame, 2006, 144, 398-406.	5.2	22

#	Article	IF	CITATIONS
109	Influence of the washcoat characteristics on NH3-SCR behavior of Cu-zeolite monoliths. Catalysis Today, 2013, 216, 82-89.	4.4	22
110	High external surface Pt/zeolite catalysts for improving polystyrene hydrocracking. Catalysis Today, 2014, 227, 163-170.	4.4	22
111	Modeling the CO2 capture and in situ conversion to CH4 on dual function Ru-Na2CO3/Al2O3 catalyst. Journal of CO2 Utilization, 2020, 42, 101351.	6.8	22
112	Platinum supported on lanthana-modified hydroxyapatite samples for realistic WGS conditions: On the nature of the active species, kinetic aspects and the resistance to shut-down/start-up cycles. Applied Catalysis B: Environmental, 2020, 270, 118851.	20.2	22
113	Tailoring perovskite surface composition to design efficient lean NOx trap Pd–La1-xAxCoO3/Al2O3-type catalysts (with A =â€Sr or Ba). Applied Catalysis B: Environmental, 2020, 266, 118628.	20.2	22
114	On the Cu species in Cu/beta catalysts related to DeNOx performance of coupled NSR-SCR technology using sequential monoliths and dual-layer monolithic catalysts. Catalysis Today, 2016, 273, 72-82.	4.4	21
115	Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H2-rich stream. International Journal of Hydrogen Energy, 2019, 44, 12649-12660.	7.1	21
116	Pd supported catalyst for gas-phase 1,2-dichloroethane abatement: Efficiency and high selectivity towards oxygenated products. Journal of Industrial and Engineering Chemistry, 2018, 57, 77-88.	5.8	20
117	Removal and structural changes in natural organic matter in a Spanish water treatment plant using nascent chlorine. Separation and Purification Technology, 2007, 57, 152-160.	7.9	19
118	Adsorption and oxidation of trichloroethylene on Ce/Zr mixed oxides: In situ FTIR and flow studies. Catalysis Communications, 2008, 9, 2018-2021.	3.3	19
119	Optimal inlet temperature trajectories for adiabatic packed reactors with catalyst decay. Chemical Engineering Science, 1992, 47, 1495-1501.	3.8	18
120	Influence of Operational Variables on the Catalytic Behavior of Pt/Alumina in the Slurry-Phase Hydrogenation of Phenol. Industrial & Engineering Chemistry Research, 1994, 33, 2571-2577.	3.7	18
121	Characterization of the catalytic properties of ceria-zirconia mixed oxides by temperature-programmed techniques. Journal of Thermal Analysis and Calorimetry, 2005, 80, 225-228.	3.6	18
122	Catalytic properties of cobalt-promoted Pd/HAP catalyst for CO-cleanup of H2-rich stream. International Journal of Hydrogen Energy, 2018, 43, 16949-16958.	7.1	18
123	Water-gas shift reaction over a novel Cu-ZnO/HAP formulation: Enhanced catalytic performance in mobile fuel cell applications. Applied Catalysis A: General, 2018, 566, 1-14.	4.3	18
124	Perovskite-Based Catalysts as Efficient, Durable, and Economical NOx Storage and Reduction Systems. Catalysts, 2020, 10, 208.	3 . 5	18
125	Kinetics of the selective hydrogenation of phenol to cyclohexanone over a Pd-alumina catalyst. Reaction Kinetics and Catalysis Letters, 1986, 32, 505-512.	0.6	17
126	Reactivation of aged model Pd/Ce0.68Zr0.32O2three-way catalyst by high temperature oxidising treatment. Chemical Communications, 2004, , 196-197.	4.1	17

#	Article	IF	CITATIONS
127	Screening of Fe–Cu-Zeolites Prepared by Different Methodology for Application in NSR–SCR Combined DeNOx Systems. Topics in Catalysis, 2013, 56, 215-221.	2.8	17
128	Intrinsic kinetics of CO2 methanation on low-loaded Ni/Al2O3 catalyst: Mechanism, model discrimination and parameter estimation. Journal of CO2 Utilization, 2022, 57, 101888.	6.8	17
129	Kinetics of the Catalytic Oxidation of Lean Trichloroethylene in Air over Pd/Alumina. Industrial & Engineering Chemistry Research, 2003, 42, 6007-6011.	3.7	16
130	Effect of the presence of n-hexane on the catalytic combustion of chlororganics over ceria–zirconia mixed oxides. Catalysis Today, 2005, 107-108, 933-941.	4.4	16
131	Design of CeO ₂ -supported LaNiO ₃ perovskites as precursors of highly active catalysts for CO ₂ methanation. Catalysis Science and Technology, 2021, 11, 6065-6079.	4.1	16
132	Application of Differential Scanning Calorimetry to the Reduction of Several Manganese Oxides. Magyar Apróvad Közlemények, 1998, 52, 985-989.	1.4	15
133	Influence of platinum and barium precursors on the NSR behavior of Pt–Ba/Al2O3 monoliths for lean-burn engines. Catalysis Today, 2009, 147, S244-S249.	4.4	15
134	Improvements in batch distillation startup. Industrial & Engineering Chemistry Research, 1987, 26, 745-750.	3.7	14
135	Pervaporation performance of PTMSP membranes at high temperatures. Journal of Applied Polymer Science, 2003, 90, 2255-2259.	2.6	14
136	Transport Phenomena in Catalytic Hydrocracking of Polystyrene in Solution. Industrial & Engineering Chemistry Research, 2013, 52, 14798-14807.	3.7	14
137	NO _{<i>x</i>} Storage and Reduction Coupled with Selective Catalytic Reduction for NO _{<i>x</i>} Removal in Lightâ€Duty Vehicles. ChemCatChem, 2018, 10, 2928-2940.	3.7	14
138	Optimisation of bimetallic Co-Ni supported catalysts for oxidation of methane in natural gas vehicles. Applied Catalysis B: Environmental, 2021, 284, 119712.	20.2	14
139	Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane. Fuel, 2022, 320, 123842.	6.4	14
140	Kinetics, Model Discrimination, and Parameters Estimation of CO ₂ Methanation on Highly Active Ni/CeO ₂ Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 10419-10435.	3.7	14
141	The effect of deactivation of Hâ€zeolites on product selectivity in the oxidation of chlorinated <scp>VOCs</scp> (trichloroethylene). Journal of Chemical Technology and Biotechnology, 2016, 91, 318-326.	3.2	13
142	Exceptional performance of gold supported on fluoridated hydroxyapatite catalysts in CO-cleanup of H2-rich stream: High activity and resistance under PEMFC operation conditions. Applied Catalysis B: Environmental, 2021, 292, 120142.	20.2	13
143	Calculation of kinetic parameters for the deactivation of heterogeneous catalyst. Industrial & Engineering Chemistry Process Design and Development, 1981, 20, 570-575.	0.6	12
144	Comparative three-way behaviour of Pt, Pd and Rh single and combined phases in a full gas mixture with oscillating feedstream. Studies in Surface Science and Catalysis, 1998, , 73-82.	1.5	12

#	Article	IF	Citations
145	Deep catalytic oxidation of chlorinated VOC mixtures from groundwater stripping emissions. Studies in Surface Science and Catalysis, 2000, 130, 1229-1234.	1.5	12
146	Mixture effects in the catalytic decomposition of lean ternary mixtures of chlororganics under oxidising conditions. Catalysis Communications, 2004, 5, 391-396.	3.3	12
147	Trihalomethane formation in ozonated and chlorinated surface water. Environmental Chemistry Letters, 2003, 1, 57-61.	16.2	11
148	New copper species generated on Cu/Al2O3-based microreactors for COPROX activity enhancement. International Journal of Hydrogen Energy, 2015, 40, 7318-7328.	7.1	11
149	Synthesis, Characterization and Kinetic Behavior of Supported Cobalt Catalysts for Oxidative after-Treatment of Methane Lean Mixtures. Materials, 2019, 12, 3174.	2.9	11
150	Influence of H2, CO, C3H6, and C7H8 as Reductants on DeNOx Behavior of Dual Monoliths for NOx Storage/Reduction Coupled with Selective Catalytic Reduction. Industrial & Engineering Chemistry Research, 2019, 58, 7001-7013.	3.7	11
151	Simulation-based optimization of cycle timing for CO2 capture and hydrogenation with dual function catalyst. Catalysis Today, 2022, 394-396, 314-324.	4.4	11
152	Control of the product distribution in the hydrogenation of vegetable oils over nickel on silica catalysts. Canadian Journal of Chemical Engineering, 1998, 76, 927-935.	1.7	10
153	Catalytic Activity Study of Ceriaâ^'Zirconia Mixed Oxides Submitted to Different Aging Treatments under Simulated Exhaust Gases. Industrial & Engineering Chemistry Research, 2000, 39, 272-276.	3.7	10
154	Kinetics of Chloroform Formation from Humic and Fulvic Acid Chlorination. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1495-1508.	1.7	10
155	Ba-doped vs. Sr-doped LaCoO3 perovskites as base catalyst in diesel exhaust purification. Molecular Catalysis, 2020, 488, 110913.	2.0	10
156	Optimization of Supports in Bifunctional Supported Pt Catalysts for Polystyrene Hydrocracking to Liquid Fuels. Topics in Catalysis, 2021, 64, 224-242.	2.8	10
157	Comparative Study of the Efficiency of Different Noble Metals Supported on Hydroxyapatite in the Catalytic Lean Methane Oxidation under Realistic Conditions. Materials, 2021, 14, 3612.	2.9	10
158	Chemical recycling of PET by alkaline hydrolysis in the presence of quaternary phosphonium and ammonium salts as phase transfer catalysts. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	10
159	Analysis of the temperature-time sequences for deactivating isothermal catalyst beds. Chemical Engineering Science, 1981, 36, 797-802.	3.8	9
160	Catalytic behaviour of H-type zeolites in the decomposition of chlorinated VOCs. Studies in Surface Science and Catalysis, 2000, 130, 893-898.	1.5	9
161	TWC Behaviour of Platinum Supported on High and Low Surface Area Cerium/Zirconium Mixed Oxides. Topics in Catalysis, 2001, 16/17, 101-106.	2.8	9
162	On the Effect of Reduction and Ageing on the TWC Activity of Pt/Ce0.68Zr0.32O2 under Simulated Automotive Exhausts. Topics in Catalysis, 2013, 56, 352-357.	2.8	9

#	Article	IF	CITATIONS
163	Characterization of Pt and Ba over alumina washcoated monolith for NOx storage and reduction (NSR) by FIB-SEM. Catalysis Today, 2013, 216, 50-56.	4.4	9
164	Optimization by lumped control of reactors with langmuirâ€hinshelwood catalyst deactivation. Canadian Journal of Chemical Engineering, 1985, 63, 314-321.	1.7	8
165	Adsorption studies of different reagents on supported palladium catalysts. Applied Catalysis, 1990, 60, 1-12.	0.8	8
166	Evaluation of the Adsorption of Aquatic Humic Substances in Batch and Column Experiments by Thermally Modified Activated Carbons. Industrial & Engineering Chemistry Research, 2009, 48, 5445-5453.	3.7	8
167	NOx Storage and Reduction for Diesel Engine Exhaust Aftertreatment. , 0, , .		8
168	Pt/ITQ-6 zeolite as a bifunctional catalyst for hydrocracking of waste plastics containing polystyrene. Journal of Material Cycles and Waste Management, 2015, 17, 465-475.	3.0	8
169	Recycle of plastic residues in cellular phones through catalytic hydrocracking to liquid fuels. Journal of Material Cycles and Waste Management, 2017, 19, 782-793.	3.0	8
170	Optimal Operating Conditions of Coupled Sequential NOx Storage/Reduction and Cu/CHA Selective Catalytic Reduction Monoliths. Topics in Catalysis, 2017, 60, 30-39.	2.8	8
171	Effect of the Presence of Ceria in the NSR Catalyst on the Hydrothermal Resistance and Global DeNOx Performance of Coupled LNT–SCR Systems. Topics in Catalysis, 2018, 61, 1993-2006.	2.8	8
172	Boosting NO _{<i>x</i>} Removal by Perovskite-Based Catalyst in NSR–SCR Diesel Aftertreatment Systems. Industrial & Engineering Chemistry Research, 2021, 60, 6525-6537.	3.7	8
173	Optimal temperature policies by distributed control for reactors with lhhw catalyst deactivation. Canadian Journal of Chemical Engineering, 1987, 65, 36-41.	1.7	7
174	HREM and XRD characterisation of thermal ageing of Pd/CeO2/Al2O3 automotive catalysts. Studies in Surface Science and Catalysis, 1999, , 187-194.	1.5	7
175	Effect of Pd addition on the catalytic performance of H-ZSM-5 zeolite in chlorinated VOCs combustion. Studies in Surface Science and Catalysis, 2002, , 847-854.	1.5	7
176	Characterisation of the textural properties of chemically dealuminated Y zeolites. Studies in Surface Science and Catalysis, 2002, , 717-722.	1.5	7
177	Effect of preparation procedure and composition of catalysts based on Mn and Ce oxides in the simultaneous removal of NOX and o-DCB. Molecular Catalysis, 2020, 495, 111152.	2.0	7
178	Study of the Pretreatment Chemistry and Thermal Stability of Zirconia Supported Ru–Pt Catalysts. Journal of Catalysis, 1999, 187, 24-29.	6.2	6
179	Noble metal loaded zeolites for the catalytic oxidation of chlorinated hydrocarbons. Reaction Kinetics and Catalysis Letters, 2005, 86, 127-133.	0.6	6
180	Viability of Au/La2O3/HAP catalysts for the CO preferential oxidation reaction under reformate gas conditions. Applied Catalysis B: Environmental, 2022, 312, 121384.	20.2	6

#	Article	lF	Citations
181	Aging studies on dual function materials Ru/Ni-Na/Ca-Al2O3 for CO2 adsorption and hydrogenation to CH4. Journal of Environmental Chemical Engineering, 2022, 10, 107951.	6.7	6
182	The control of the temperature and the feed in deactivating isothermal catalyst beds. The Chemical Engineering Journal, 1984, 28, 13-20.	0.3	5
183	Space-time policy in deactivating isothermal catalyst beds. Chemical Engineering Science, 1984, 39, 615-618.	3.8	5
184	Analysis of the lumped and distributed optimal temperature trajectories for packed bed reactors with concentration dependent catalyst deactivation. Canadian Journal of Chemical Engineering, 1990, 68, 860-866.	1.7	5
185	Behavior of highly dispersed platinum catalysts in liquid-phase hydrogenations. Industrial & mp; Engineering Chemistry Research, 1993, 32, 1035-1040.	3.7	5
186	Prediction of lifetime of poly(2-hexyne) films through the kinetics of thermooxidative degradation from thermogravimetric and molecular weight data. Chemical Engineering Science, 1996, 51, 1113-1120.	3.8	5
187	Kinetics of weight loss and chain scission in the thermooxidative degradation of poly[1-(trimethylsilyl)-1-propyne] films. Journal of Polymer Science Part A, 1999, 37, 4309-4317.	2.3	5
188	Title is missing!. Reaction Kinetics and Catalysis Letters, 2000, 70, 341-348.	0.6	5
189	Performance of Cu-ZSM-5 in a Coupled Monolith NSR-SCR System for NOx Removal in Lean-Burn Engine Exhaust. Topics in Catalysis, 2016, 59, 259-267.	2.8	5
190	Transition Metal Hexacyanoferrate(II) Complexes as Catalysts in the Ring-Opening Copolymerization of CO2 and Propylene Oxide. Topics in Catalysis, 2022, 65, 1541-1555.	2.8	5
191	Modeling the degradation kinetics of poly(2-hexyne) membranes via gel permeation chromatography. Journal of Membrane Science, 1997, 129, 83-91.	8.2	4
192	Monitoring trihalomethanes in water by differential ultraviolet spectroscopy. Environmental Chemistry Letters, 2006, 4, 243-247.	16.2	4
193	Study of the temperature-programmed oxidative degradation of hydrocarbons over Ce-based catalysts by evolved gas analysis. Journal of Thermal Analysis and Calorimetry, 2007, 87, 55-60.	3.6	4
194	Tuning the cycle length in the NOx storage-reduction process and its contribution to the real-flow scenario. Chemical Engineering Journal, 2009, 150, 447-454.	12.7	4
195	Application of Principal Component Analysis to the Adsorption of Natural Organic Matter by Modified Activated Carbons. Separation Science and Technology, 2011, 46, 2239-2249.	2.5	4
196	Microcolumn adsorption studies of acid/basic dyes related to the physicochemical properties of the adsorbent. Coloration Technology, 2014, 130, 62-72.	1.5	4
197	Structured NSR-SCR hybrid catalytic technology: Influence of operational parameters on deNOx activity. Catalysis Today, 2022, 383, 287-298.	4.4	4
198	Porous Hexacyanometallate(III) Complexes as Catalysts in the Ring-Opening Copolymerization of CO2 and Propylene Oxide. Catalysts, 2021, 11, 1450.	3 . 5	4

#	Article	IF	CITATIONS
199	Relation Between the Preparation and the Morphology of Silica-Alumina Gels. Adsorption Science and Technology, 1987, 4, 149-161.	3.2	3
200	81 Gas-phase catalytic decomposition of mixtures of low-molecular-weight chlorinated VOCs. Studies in Surface Science and Catalysis, 2003, , 375-378.	1.5	3
201	Optimization of inlet temperature for deactivating LTWGS reactor performance. AICHE Journal, 2005, 51, 2016-2023.	3.6	3
202	EuropaCat IX. Platinum Metals Review, 2010, 54, 103-111.	1.2	3
203	Catalytic Properties of CuO/Al2O3-Based Microreactors in SCR of NOx with NH3. Topics in Catalysis, 2016, 59, 1002-1007.	2.8	3
204	Towards the development of advanced hierarchical chabazite materials: Novel micro-mesoporous silicoaluminophosphate SAPO-34 zeolites. Materials Today Communications, 2022, 31, 103580.	1.9	3
205	Kinetics of isomerization of maleic acid using ammonium bromide and ammonium peroxydisulfate as catalyst. Industrial & Engineering Chemistry Research, 1991, 30, 2138-2143.	3.7	2
206	Surface features and catalytic performance of platinum/alumina catalysts in slurry-phase hydrogenation. Industrial & Engineering Chemistry Research, 1993, 32, 2457-2463.	3.7	2
207	Effect of the Incorporation Order of Pt- and Ba-Precursors on the Structure and Catalytic Performance of NSR Catalysts. Topics in Catalysis, 2009, 52, 1808-1812.	2.8	2
208	Chapter 2. NSR Technology. RSC Catalysis Series, 2018, , 36-66.	0.1	2
209	Durability of Three-Way Platinum and Rhodium Catalysts in Oxidizing, Reducing and Cycled Environments. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1999, 96, 437-442.	0.2	2
210	Analysis of combined temperature and space time trajectories to maintain constant the exit conversion of fixed bed reactors with catalyst decay. The Chemical Engineering Journal, 1991, 47, 105-112.	0.3	1
211	Techno-economic optimization of isomerization of maleic acid to fumaric acid using ammonium bromide as a soluble catalyst. Chemical Engineering and Processing: Process Intensification, 1991, 30, 15-21.	3.6	1
212	Sequential design of experiments for optimal model discrimination and parameter estimation in isopropanol dehydration. Chemical Engineering Science, 1991, 46, 2161-2166.	3.8	1
213	Effect of molecular weight and presence of antioxidant in thermooxidative degradation of poly(2-hexyne) films. Chemical Engineering Science, 1996, 51, 2811-2816.	3.8	1
214	Promotion of Ru/ZrO2 catalysts by platinum. Studies in Surface Science and Catalysis, 2000, 143, 555-563.	1.5	1
215	Influence of the treatment of Y zeolite by ammonium hexafluorosilicate on the physicochemical and catalytic properties: application for chlororganics destruction. Studies in Surface Science and Catalysis, 2000, , 463-470.	1.5	1
216	Pd Supported on Ce/Zr Mixed Oxides in the Reduction of NO with Propylene in Oxidizing Conditions. International Journal of Chemical Reactor Engineering, 2006, 4, .	1.1	1

#	Article	IF	CITATIONS
217	Aftertreatment DeNOx Systems for Future Light Duty Lean-Burned Emission Regulations. Catalysts, 2021, 11, 188.	3.5	1
218	Promoter Effects on Platinum Catalysts for Automotive Exhaust Control. Studies in Surface Science and Catalysis, 1993, 75, 2689-2692.	1.5	0
219	Yield and Purity Comparison of Dimethoate Manufacturing Processes:Â Homogeneous Reaction, Two-Phase Uncatalyzed Reaction, and Phase Transfer Catalysis. Industrial & Engineering Chemistry Research, 1996, 35, 4389-4393.	3.7	O
220	Intercooled Double-Bed Reactor for LTWGS Reaction with Catalyst Poisoning by Chlorine: Inlet Temperatures for the Maximization of the Production. International Journal of Chemical Reactor Engineering, 2006, 4, .	1.1	0
221	Catalytic Oxidation of Volatile Organic Compounds: Chlorinated Hydrocarbons. , 2014, , 91-131.		O
222	Environmental catalysis â€" Topical issue. Chemical Papers, 2014, 68, .	2.2	0
223	Perovskite-Based Formulations as Rival Platinum Catalysts for NOx Removal in Diesel Exhaust Aftertreatment. , 2020, , .		O
224	Alternative Catalytic Formulations for Simultaneous NH3-SCR and PCDD/Fs Oxidation. , 0, , .		0