Arnold Caplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548027/publications.pdf Version: 2024-02-01

ADNOLD CADLAN

#	Article	IF	CITATIONS
1	Mesenchymal stem cells. Journal of Orthopaedic Research, 1991, 9, 641-650.	1.2	4,258
2	Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 2006, 98, 1076-1084.	1.2	2,613
3	In VitroChondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells. Experimental Cell Research, 1998, 238, 265-272.	1.2	2,169
4	Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 1997, 64, 295-312.	1.2	1,934
5	Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 2007, 213, 341-347.	2.0	1,731
6	The MSC: An Injury Drugstore. Cell Stem Cell, 2011, 9, 11-15.	5.2	1,412
7	Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine and Growth Factor Reviews, 2009, 20, 419-427.	3.2	1,241
8	Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regenerative Medicine, 2019, 4, 22.	2.5	1,113
9	Rapid Hematopoietic Recovery After Coinfusion of Autologous-Blood Stem Cells and Culture-Expanded Marrow Mesenchymal Stem Cells in Advanced Breast Cancer Patients Receiving High-Dose Chemotherapy. Journal of Clinical Oncology, 2000, 18, 307-307.	0.8	1,043
10	Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 2001, 7, 259-264.	3.5	1,020
11	Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle and Nerve, 1995, 18, 1417-1426.	1.0	1,006
12	Why are MSCs therapeutic? New data: new insight. Journal of Pathology, 2009, 217, 318-324.	2.1	996
13	A New Human Somatic Stem Cell from Placental Cord Blood with Intrinsic Pluripotent Differentiation Potential. Journal of Experimental Medicine, 2004, 200, 123-135.	4.2	968
14	Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental and Molecular Medicine, 2013, 45, e54-e54.	3.2	954
15	In Search of the In Vivo Identity of Mesenchymal Stem Cells. Stem Cells, 2008, 26, 2287-2299.	1.4	953
16	The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs, 2001, 169, 12-20.	1.3	849
17	Mesenchymal Stem Cells: Time to Change the Name!. Stem Cells Translational Medicine, 2017, 6, 1445-1451.	1.6	761
18	The Chondrogenic Potential of Human Bone-Marrow-Derived Mesenchymal Progenitor Cells*. Journal of Bone and Joint Surgery - Series A, 1998, 80, 1745-57.	1.4	751

Arnold Caplan

#	Article	IF	CITATIONS
19	Review: Mesenchymal Stem Cells: Cell–Based Reconstructive Therapy in Orthopedics. Tissue Engineering, 2005, 11, 1198-1211.	4.9	728
20	Mesenchymal Stem Cells: Mechanisms of Inflammation. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 457-478.	9.6	715
21	Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. Journal of Cellular Biochemistry, 1994, 56, 283-294.	1.2	712
22	Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology, 1990, 109, 111-130.	2.0	709
23	Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. Journal of Orthopaedic Research, 1998, 16, 406-413.	1.2	672
24	All MSCs Are Pericytes?. Cell Stem Cell, 2008, 3, 229-230.	5.2	647
25	Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-11±. , 1996, 166, 585-592.		567
26	The Mesengenic Process. Clinics in Plastic Surgery, 1994, 21, 429-435.	0.7	561
27	Stem cell technology and bioceramics: From cell to gene engineering. , 1999, 48, 913-927.		513
28	Autologous Mesenchymal Stem Cell-Mediated Repair of Tendon. Tissue Engineering, 1999, 5, 267-277.	4.9	496
29	Human bone marrowâ€derived mesenchymal stem cells induce Th2â€polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 2009, 57, 1192-1203.	2.5	478
30	FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology, 2005, 203, 398-409.	2.0	443
31	Isolation and Characterization of a Population of Immature Dental Pulp Stem Cells Expressing OCT-4 and Other Embryonic Stem Cell Markers. Cells Tissues Organs, 2006, 184, 105-116.	1.3	421
32	Fibroblast heterogeneity: more than skin deep. Journal of Cell Science, 2004, 117, 667-675.	1.2	400
33	Exploring the Transâ€Cleavage Activity of CRISPRâ€Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angewandte Chemie - International Edition, 2019, 58, 17399-17405.	7.2	399
34	Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis. Journal of Cellular Physiology, 2001, 187, 345-355.	2.0	379
35	A Quadripotential Mesenchymal Progenitor Cell Isolated from the Marrow of an Adult Mouse. Journal of Bone and Mineral Research, 1999, 14, 700-709.	3.1	372
36	Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. Journal of Orthopaedic Research, 1999, 17, 205-213.	1.2	365

Arnold Caplan

#	Article	IF	CITATIONS
37	Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models. Nature Neuroscience, 2012, 15, 862-870.	7.1	365
38	Mesenchymal Stem Cells in Tissue Repair. Frontiers in Immunology, 2013, 4, 201.	2.2	365
39	MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells International, 2013, 2013, 1-13.	1.2	346
40	Repair of bone defects with marrow cells and porous ceramic: Experiments in rats. Acta Orthopaedica, 1989, 60, 334-339.	1.4	341
41	Stimulatory Effects of Basic Fibroblast Growth Factor and Bone Morphogenetic Protein-2 on Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Bone and Mineral Research, 1997, 12, 1606-1614.	3.1	333
42	Heterotopic osteogenesis in porous ceramics induced by marrow cells. Journal of Orthopaedic Research, 1989, 7, 568-578.	1.2	332
43	Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials, 2007, 28, 3217-3227.	5.7	320
44	Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells In Vitro. Biomacromolecules, 2009, 10, 541-546.	2.6	319
45	A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nature Medicine, 2009, 15, 313-318.	15.2	314
46	The STRO-1+ Marrow Cell Population Is Multipotential. Cells Tissues Organs, 2002, 170, 73-82.	1.3	301
47	A Chemically Defined Medium Supports in Vitro Proliferation and Maintains the Osteochondral Potential of Rat Marrow-Derived Mesenchymal Stem Cells. Experimental Cell Research, 1995, 219, 211-222.	1.2	281
48	Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Translational Medicine, 2021, 10, 660-673.	1.6	281
49	Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations. Tissue Engineering - Part B: Reviews, 2014, 20, 596-608.	2.5	269
50	Tissue-Engineered Fabrication of an Osteochondral Composite Graft Using Rat Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering, 2001, 7, 363-371.	4.9	262
51	Osteogenesis in Marrow-Derived Mesenchymal Cell Porous Ceramic Composites Transplanted Subcutaneously: Effect of Fibronectin and Laminin on Cell Retention and Rate of Osteogenic Expression. Cell Transplantation, 1992, 1, 23-32.	1.2	260
52	PDGF in bone formation and regeneration: New insights into a novel mechanism involving MSCs. Journal of Orthopaedic Research, 2011, 29, 1795-1803.	1.2	255
53	Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. Journal of Orthopaedic Research, 1991, 9, 465-476.	1.2	253
54	Repair of Large Full-Thickness Articular Cartilage Defects with Allograft Articular Chondrocytes Embedded in a Collagen Gel. Tissue Engineering, 1998, 4, 429-444.	4.9	242

#	Article	IF	CITATIONS
55	Human and animal mesenchymal progenitor cells from bone marrow: Identification of serum for optimal selection and proliferation. In Vitro Cellular and Developmental Biology - Animal, 1996, 32, 602-611.	0.7	240
56	Bone marrow–derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Experimental Hematology, 1999, 27, 1675-1681.	0.2	233
57	Chondrogenesis of Adult Stem Cells from Adipose Tissue and Bone Marrow: Induction by Growth Factors and Cartilage-Derived Matrix. Tissue Engineering - Part A, 2010, 16, 523-533.	1.6	223
58	Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone. Tissue Engineering - Part A, 2008, 14, 1809-1820.	1.6	213
59	Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB Journal, 2002, 16, 1691-1694.	0.2	207
60	Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance. Cancer Research, 2015, 75, 924-929.	0.4	203
61	In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells*1. Experimental Cell Research, 1991, 195, 492-503.	1.2	202
62	Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation. Journal of Biomedical Materials Research Part B, 1990, 24, 1563-1570.	3.0	201
63	Hyaluronan-based polymers in the treatment of osteochondral defects. Journal of Orthopaedic Research, 2000, 18, 773-780.	1.2	198
64	Fibroblast Growth Factor-2 Enhances Proliferation and Delays Loss of Chondrogenic Potential in Human Adult Bone-Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering - Part A, 2010, 16, 1009-1019.	1.6	181
65	Chapter 4 Fibroblasts—A Diverse Population at the Center of It All. International Review of Cell and Molecular Biology, 2009, 276, 161-214.	1.6	176
66	Biomineralization and Eggshells: Cell-Mediated Acellular Compartments of Mineralized Extracellular Matrix. International Review of Cytology, 1993, 145, 217-250.	6.2	175
67	Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Archives of Medical Research, 2021, 52, 93-101.	1.5	174
68	Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis and Cartilage, 2005, 13, 297-309.	0.6	172
69	Adult Stem Cell Driven Genesis of Human-Shaped Articular Condyle. Annals of Biomedical Engineering, 2004, 32, 911-923.	1.3	169
70	Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L760-L770.	1.3	169
71	Chondroprogenitor cells of synovial tissue. Arthritis and Rheumatism, 1999, 42, 2631-2637.	6.7	165
72	Isolation of human marrow-derived mesenchymal stem cells. Experimental Hematology, 2006, 34, 1604-1605.	0.2	164

#	Article	IF	CITATIONS
73	The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials, 2013, 34, 5802-5812.	5.7	163
74	Treatment of Osteochondral Defects with Autologous Bone Marrow in a Hyaluronan-Based Delivery Vehicle. Tissue Engineering, 2002, 8, 333-347.	4.9	162
75	LacZ and Interleukin-3 Expression <i>In Vivo</i> after Retroviral Transduction of Marrow-Derived Human Osteogenic Mesenchymal Progenitors. Human Gene Therapy, 1997, 8, 1417-1427.	1.4	161
76	Optimizing mesenchymal stem cell-based therapeutics. Current Opinion in Biotechnology, 2009, 20, 531-536.	3.3	161
77	Adult Mesenchymal Stem Cells: When, Where, and How. Stem Cells International, 2015, 2015, 1-6.	1.2	160
78	BMP-2 induction and TGF-?1 modulation of rat periosteal cell chondrogenesis. Journal of Cellular Biochemistry, 2001, 81, 284-294.	1.2	156
79	Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-β1 or PDGF-BB as assayed in vivo and in vitro. Journal of Bone and Mineral Research, 1996, 11, 1264-1273.	3.1	154
80	Articular cartilage repair: Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthopaedica, 1998, 69, 56-62.	1.4	151
81	In Vivo Osteochondrogenic Potential of Cultured Cells Derived From the Periosteum. Clinical Orthopaedics and Related Research, 1990, &NA, 223???232.	0.7	144
82	Immunochemical and Mechanical Characterization of Cartilage Subtypes in Rabbit. Journal of Histochemistry and Cytochemistry, 2002, 50, 1049-1058.	1.3	142
83	Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials, 1991, 12, 253-258.	5.7	141
84	Influence of Adult Mesenchymal Stem Cells on <i>In Vitro</i> Vascular Formation. Tissue Engineering - Part A, 2009, 15, 1751-1761.	1.6	141
85	What's in a Name?. Tissue Engineering - Part A, 2010, 16, 2415-2417.	1.6	139
86	Human Bone Marrow-Derived Mesenchymal (Stromal) Progenitor Cells (MPCs) Cannot Be Recovered from Peripheral Blood Progenitor Cell Collections. Stem Cells and Development, 1997, 6, 447-455.	1.0	138
87	Repair of Osteochondral Defect with Tissue-Engineered Two-Phase Composite Material of Injectable Calcium Phosphate and Hyaluronan Sponge. Tissue Engineering, 2002, 8, 827-837.	4.9	137
88	Collagens of the Chicken Eggshell Membranes. Connective Tissue Research, 1991, 26, 37-45.	1.1	132
89	Osteogenesis in cultures of limb mesenchymal cells. Developmental Biology, 1979, 73, 84-102.	0.9	130
90	Stem Cells in Dental Pulp of Deciduous Teeth. Tissue Engineering - Part B: Reviews, 2012, 18, 129-138.	2.5	129

6

#	Article	IF	CITATIONS
91	MSCs: The Sentinel and Safe-Guards of Injury. Journal of Cellular Physiology, 2016, 231, 1413-1416.	2.0	124
92	Cartilage Regeneration Using Principles of Tissue Engineering. Clinical Orthopaedics and Related Research, 2001, 391, S161-S170.	0.7	123
93	Age-related Changes in the Proteoglycans of Human Skin. Archives of Biochemistry and Biophysics, 2000, 373, 91-101.	1.4	121
94	New MSC: MSCs as pericytes are Sentinels and gatekeepers. Journal of Orthopaedic Research, 2017, 35, 1151-1159.	1.2	119
95	Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells International, 2016, 2016, 1-12.	1.2	117
96	Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. Developmental Biology, 1986, 113, 10-16.	0.9	114
97	Isolation of rat marrow-derived mesenchymal stem cells. Experimental Hematology, 2006, 34, 1606-1607.	0.2	113
98	ION-INDUCED ULTRASTRUCTURAL TRANSFORMATIONS IN ISOLATED MITOCHONDRIA. Journal of Cell Biology, 1969, 42, 221-234.	2.3	111
99	Tissue Engineering Designs for the Future: New Logics, Old Molecules. Tissue Engineering, 2000, 6, 1-8.	4.9	111
100	Myogenic Expression of Mesenchymal Stem Cells within Myotubes of mdx Mice in Vitro and in Vivo. Tissue Engineering, 1995, 1, 327-343.	4.9	110
101	In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(É>-caprolactone) scaffolds. Biomaterials, 2010, 31, 2193-2200.	5.7	107
102	Meniscus Regeneration in a Rabbit Partial Meniscectomy Model. Tissue Engineering, 1999, 5, 327-337.	4.9	106
103	Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Research and Therapy, 2010, 1, 30.	2.4	106
104	Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthritis and Cartilage, 2015, 23, 443-453.	0.6	106
105	New Era of Cell-Based Orthopedic Therapies. Tissue Engineering - Part B: Reviews, 2009, 15, 195-200.	2.5	104
106	Microstructure of matrix and mineral components of eggshells from White Leghorn chickens (Gallus) Tj ETQqO	0 0 rgBT /0	Overlock 10 Th
107	Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cellular & Developmental Biology, 1993, 29, 699-707.	1.0	102

#	Article	IF	CITATIONS
109	Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. Developmental Biology, 1986, 114, 504-518.	0.9	99
110	Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture. The Journal of Experimental Zoology, 1982, 224, 331-344.	1.4	98
111	MSC Frequency Correlates with Blood Vessel Density in Equine Adipose Tissue. Tissue Engineering - Part A, 2009, 15, 221-229.	1.6	98
112	Principles of Tissue Engineered Regeneration of Skeletal Tissues. Clinical Orthopaedics and Related Research, 1999, 367, S12-S16.	0.7	95
113	A Rapid Seeding Technique for the Assembly of Large Cell/Scaffold Composite Constructs. Tissue Engineering, 2006, 12, 1851-1863.	4.9	94
114	Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. Journal of Biomedical Materials Research - Part A, 2009, 88A, 889-897.	2.1	93
115	Scaling-Up of Dental Pulp Stem Cells Isolated from Multiple Niches. PLoS ONE, 2012, 7, e39885.	1.1	92
116	Mesenchymal Stem Cells and Gene Therapy. Clinical Orthopaedics and Related Research, 2000, 379, S67-S70.	0.7	90
117	Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. Journal of Cellular Physiology, 2006, 207, 364-373.	2.0	90
118	The MSC curtain that stops the immune system. Immunology Letters, 2015, 168, 136-139.	1.1	90
119	Cartilage. Scientific American, 1984, 251, 84-94.	1.0	89
120	BIOCHEMICAL AND ULTRASTRUCTURAL PROPERTIES OF OSMOTICALLY LYSED RAT-LIVER MITOCHONDRIA. Journal of Cell Biology, 1966, 31, 455-472.	2.3	87
121	Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Archives of Biochemistry and Biophysics, 1992, 298, 293-302.	1.4	87
122	Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9, 1007-1022.	1.6	85
123	Human Mesenchymal Stem Cells Signals Regulate Neural Stem Cell Fate. Neurochemical Research, 2007, 32, 353-362.	1.6	84
124	Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Developmental Dynamics, 2000, 219, 50-62.	0.8	83
125	Tissue Engineering of Autologous Cartilage Grafts in Three-Dimensionalin VitroMacroaggregate Culture System. Tissue Engineering, 2004, 10, 1695-1706.	4.9	83
126	Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Developmental Biology, 1986, 114, 519-528.	0.9	81

#	Article	IF	CITATIONS
127	Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. Journal of Biomedical Materials Research Part B, 1990, 24, 901-911.	3.0	81
128	Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. , 1996, 167, 523-538.		79
129	Chondrogenesis and Mineralization During <i>In Vitro</i> Culture of Human Mesenchymal Stem Cells on Three-Dimensional Woven Scaffolds. Tissue Engineering - Part A, 2010, 16, 3709-3718.	1.6	79
130	Targeted delivery of progenitor cells for cartilage repair. Journal of Orthopaedic Research, 2004, 22, 735-741.	1.2	78
131	In vitro dexamethasone pretreatment enhances bone formation of human mesenchymal stem cells in vivo. Journal of Orthopaedic Research, 2009, 27, 916-921.	1.2	78
132	Age-related Changes in the Proteoglycans of Human Skin. Journal of Biological Chemistry, 2003, 278, 17566-17572.	1.6	77
133	Marrow-derived progenitor cell injections enhance new bone formation during distraction. Journal of Orthopaedic Research, 1999, 17, 900-908.	1.2	74
134	Exploring the Transâ€Cleavage Activity of CRISPR as12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angewandte Chemie, 2019, 131, 17560-17566.	1.6	74
135	Dermatan Sulfate Proteoglycans from the Mineralized Matrix of the Avian Eggshell. Connective Tissue Research, 1997, 36, 175-193.	1.1	73
136	Cell-based tissue engineering therapies: the influence of whole body physiology Advanced Drug Delivery Reviews, 1998, 33, 3-14.	6.6	73
137	In vivo osteogenesis assay: a rapid method for quantitative analysis. Biomaterials, 1998, 19, 1323-1328.	5.7	68
138	Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells. Journal of Orthopaedic Research, 2000, 18, 18-24.	1.2	68
139	Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: Nonsoluble factors in the extracellular matrix influence interactions. Wound Repair and Regeneration, 2008, 16, 300-309.	1.5	68
140	Defining human mesenchymal stem cell efficacy in vivo. Journal of Inflammation, 2010, 7, 51.	1.5	67
141	Bone development and repair. BioEssays, 1987, 6, 171-175.	1.2	66
142	Efficient Lentiviral Transduction of Human Mesenchymal Stem Cells That Preserves Proliferation and Differentiation Capabilities. Stem Cells Translational Medicine, 2012, 1, 886-897.	1.6	66
143	International Expert Consensus on a Cell Therapy Communication Tool: DOSES. Journal of Bone and Joint Surgery - Series A, 2019, 101, 904-911.	1.4	66
144	The Avian Eggshell Extracellular Matrix as a Model for Biomineralization. Connective Tissue Research, 1996, 35, 325-328.	1.1	65

#	Article	IF	CITATIONS
145	High Variability in Rabbit Bone Marrow-Derived Mesenchymal Cell Preparations. Cell Transplantation, 1999, 8, 511-519.	1.2	64
146	Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum-derived cells. Journal of Bone and Mineral Research, 1994, 9, 1195-1204.	3.1	61
147	Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells. Stem Cells, 2015, 33, 2773-2784.	1.4	61
148	Cartilage Tissue Engineering for Laryngotracheal Reconstruction: Comparison of Chondrocytes from Three Anatomic Locations in the Rabbit. Tissue Engineering, 2007, 13, 843-853.	4.9	60
149	Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. International Journal of Cancer, 2016, 138, 417-427.	2.3	59
150	THE EFFECTS OF OSMOTIC LYSIS ON THE OXIDATIVE PHOSPHORYLATION AND COMPARTMENTATION OF RAT LIVER MITOCHONDRIA. Journal of Cell Biology, 1968, 36, 15-31.	2.3	58
151	First bone formation in the developing chick limb. Developmental Biology, 1981, 86, 147-156.	0.9	58
152	The possible differentiation of osteogenic elements in vitro from chick limb mesodermal cells. Developmental Biology, 1976, 52, 283-299.	0.9	57
153	Toxic Effects of Gentamicin on Marrow-derived Human Mesenchymal Stem Cells. Clinical Orthopaedics and Related Research, 2006, 452, 242-249.	0.7	57
154	Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. Journal of Drug Targeting, 2012, 20, 23-32.	2.1	57
155	Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. , 1997, 64, 295.		55
156	Patterns of Glycosaminoglycan/Proteoglycan Immunostaining in Human Skin During Aging. Journal of Investigative Dermatology, 1990, 96, 968-974.	0.3	54
157	The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds. Biomaterials, 2012, 33, 8967-8974.	5.7	54
158	Serial Transplantation and Long-term Engraftment of Intra-arterially Delivered Clonally Derived Mesenchymal Stem Cells to Injured Bone Marrow. Molecular Therapy, 2014, 22, 160-168.	3.7	54
159	Body Management: Mesenchymal Stem Cells Control the Internal Regenerator. Stem Cells Translational Medicine, 2015, 4, 695-701.	1.6	54
160	Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication, 2014, 6, 015003.	3.7	53
161	Structural Domains in Chondroitin Sulfate Identified by Anti-Chondroitin Sulfate Monoclonal Antibodies. Immunosequencing of Chondroitin Sulfates. Matrix Biology, 1993, 13, 351-361.	1.8	52
162	Mesenchymal Stem Cells. Cartilage, 2010, 1, 6-9.	1.4	52

#	Article	IF	CITATIONS
163	Age-related differences in human skin proteoglycans. Glycobiology, 2011, 21, 257-268.	1.3	52
164	Nondestructive Evaluation of Hydrogel Mechanical Properties Using Ultrasound. Annals of Biomedical Engineering, 2011, 39, 2521-2530.	1.3	52
165	Generation of a Monoclonal Antibody Against Avian Small Dermatan Sulfate Proteoglycan: Immunolocalization and Tissue Distribution of PG-II (Decorin) in Embryonic Tissues. Matrix Biology, 1991, 11, 412-427.	1.8	51
166	Versican in human fetal skin development. Anatomy and Embryology, 1999, 199, 45-56.	1.5	51
167	A simple method for stem cell labeling with fluorine 18. Nuclear Medicine and Biology, 2005, 32, 701-705.	0.3	51
168	Clonal characterization of fibroblasts in the superficial layer of the adult human dermis. Cell and Tissue Research, 2007, 327, 499-510.	1.5	50
169	Chemotactic response of embryonic limb bud mesenchymal cells and muscle-derived fibroblasts to transforming growth factor-β. Connective Tissue Research, 1988, 18, 1-7.	1.1	49
170	Dexamethasone inhibition of confluenceâ€induced apoptosis in human mesenchymal stem cells. Journal of Orthopaedic Research, 2009, 27, 216-221.	1.2	49
171	The role of CXCL12 and CCL7 chemokines in immune regulation, embryonic development, and tissue regeneration. Cytokine, 2014, 69, 277-283.	1.4	48
172	The vasculature and limb development. Cell Differentiation, 1985, 16, 1-11.	1.3	47
173	Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction. PLoS ONE, 2011, 6, e23891.	1.1	47
174	Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discovery Medicine, 2010, 9, 337-45.	0.5	47
175	The effects of the nicotinamide sensitive teratogen 3-acetylpyridine on chick limb mesodermal cells in culture: Biochemical parameters. The Journal of Experimental Zoology, 1972, 180, 351-362.	1.4	46
176	Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a collagenous delivery vehicle. Journal of Biomedical Materials Research Part B, 1989, 23, 23-39.	3.0	46
177	The anatomy, ultrastructure and fluid dynamics of the developing vasculature of the embryonic chick wing bud. Cell Differentiation, 1985, 16, 13-28.	1.3	45
178	Growth, differentiation capacity, and function of mesenchymal stem cells expanded in serum-free medium developed via combinatorial screening. Experimental Cell Research, 2013, 319, 1409-1418.	1.2	45
179	Effects of a nicotinamide-sensitive teratogen 6-aminonicotinamide on chick limb cells in culture. Experimental Cell Research, 1972, 70, 185-195.	1.2	44
180	Cellular and Molecular Events During Embryonic Bone Development. Connective Tissue Research, 1989, 20, 65-71.	1.1	44

#	Article	IF	CITATIONS
181	The dynamics of compartmentalization of embryonic muscle by extracellular matrix molecules. Developmental Biology, 1991, 147, 46-61.	0.9	44
182	A fraction from extracts of demineralized adult bone stimulates the conversion of mesenchymal cells into chondrocytes. Developmental Biology, 1984, 104, 348-356.	0.9	43
183	Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia. Developmental Biology, 1985, 110, 275-283.	0.9	43
184	Osteogenic cell lineage analysis is facilitated by organ cultures of embryonic chick periosteum. Developmental Biology, 1990, 141, 319-329.	0.9	43
185	Different response to osteo-inductive agents in bone marrow- and periosteum-derived cell preparations. Acta Orthopaedica, 1998, 69, 426-432.	1.4	43
186	Osteogenesis Imperfecta, Rehabilitation Medicine, Fundamental Research and Mesenchymal Stem Cells. Connective Tissue Research, 1995, 31, s9-s14.	1.1	42
187	Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers. Bone and Mineral, 1990, 11, 141-151.	2.0	41
188	Proteoglycans of uterine fibroids and keloid scars: similarity in their proteoglycan composition. Biochemical Journal, 2012, 443, 361-368.	1.7	41
189	An Integrated Multiâ€Function Heterogeneous Biochemical Circuit for Highâ€Resolution Electrochemistryâ€Based Genetic Analysis. Angewandte Chemie - International Edition, 2020, 59, 20545-20551.	7.2	39
190	Poly(ADPribose) levels as a function of chick limb mesenchymal cell development as studied in vitro and in vivo. Developmental Biology, 1979, 72, 102-109.	0.9	38
191	BONE REGENERATION THROUGH CELLULAR ENGINEERING. , 2000, , 683-696.		38
192	Regenerative Treatments to Enhance Orthopedic Surgical Outcome. PM and R, 2015, 7, S41-S52.	0.9	38
193	Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-11 \pm . , 1996, 166, 585.		38
194	The control of muscle and cartilage development in the chick limb: the role of differential vascularization. Development (Cambridge), 1973, 29, 571-583.	1.2	38
195	An osteo-inductive bone matrix extract stimulates thein vitro conversion of mesenchyme into chondrocytes. Calcified Tissue International, 1984, 36, 625-627.	1.5	37
196	Cartilage Begets Bone Versus Endochondral Myelopoiesis. Clinical Orthopaedics and Related Research, 1990, &NA, 257???267.	0.7	35
197	The establishment of vascular-derived microenvironments in the developing chick wing. Developmental Biology, 1983, 97, 364-374.	0.9	34
198	A monoclonal antibody which recognizes a glycosaminoglycan epitope in both dermatan sulfate and chondroitin sulfate proteoglycans of human skin. The Histochemical Journal, 1999, 31, 549-558.	0.6	34

#	Article	IF	CITATIONS
199	Monoclonal antibodies to mineralized matrix molecules of the avian eggshell. Matrix Biology, 2000, 19, 683-692.	1.5	34
200	Embryonic Development and the Principles of Tissue Engineering. Novartis Foundation Symposium, 2008, , 17-33.	1.2	34
203	Identification of a Subpopulation of Marrow MSC-Derived Medullary Adipocytes That Express Osteoclast-Regulating Molecules: Marrow Adipocytes Express Osteoclast Mediators. PLoS ONE, 2014, 9, e108920.	1.1	34
202	BIOLOGICAL RESURFACING: AN ALTERNATIVE TO TOTAL JOINT ARTHROPLASTY. Orthopedics, 1994, 17, 819-821.	0.5	34
203	The creation of an inÂvitro adipose tissue that contains a vascular–adipocyte complex. Biomaterials, 2011, 32, 9667-9676.	5.7	33
204	The potential of mesenchymal stem cells for neural repair. Discovery Medicine, 2010, 9, 236-42.	0.5	33
208	Mesenchymal stem cells: Progenitors, progeny, and pathways. Journal of Bone and Mineral Metabolism, 1996, 14, 193-201.	1.3	32
200	The extracellular matrix is instructive. BioEssays, 1986, 5, 129-132.	1.2	31
207	Osteochondral Defect Repair by Demineralized Cortical Bone Matrix. Clinical Orthopaedics and Related Research, 2004, 427, S62-S66.	0.7	31
208	Effect of Transforming Growth Factor β2 on Marrow-Infused Foam Poly(Propylene Fumarate) Tissue-Engineered Constructs for the Repair of Critical-Size Cranial Defects in Rabbits. Tissue Engineering, 2005, 11, 923-939.	4.9	31
209	Collagen gene expression during chondrogenesis from chick periosteum-derived cells. FEBS Letters, 1992, 299, 278-282.	1.3	30
210	Monoclonal antibody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. , 1998, 212, 119-132.		30
211	The effect of Sr2+ on swelling and ATP-linked contraction of mitochondria. Biochimica Et Biophysica Acta - General Subjects, 1965, 104, 317-329.	1.1	29
212	A scanning electron microscopic investigation of in vitro osteogenesis. Calcified Tissue International, 1980, 30, 43-50.	1.5	29
213	Production of a monoclonal antibody, DF-5, that identifies cells at the epithelial-mesenchymal interface in normal human skin. APN/CD13 is an epithelial-mesenchymal marker in skin. Experimental Dermatology, 2003, 12, 315-323.	1.4	29
214	Low Oxygen Tension During Incubation Periods of Chondrocyte Expansion Is Sufficient to Enhance Postexpansion Chondrogenesis. Tissue Engineering - Part A, 2010, 16, 1585-1593.	1.6	29
215	Cell transplantation as an initiator of endogenous stem cell-based tissue repair. Current Opinion in Organ Transplantation, 2012, 17, 670-674.	0.8	29
216	Characterization of a bone-specific alkaline phosphatase in chick limb mesenchymal cell cultures. Developmental Biology, 1981, 86, 136-146.	0.9	28

#	Article	IF	CITATIONS
217	Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discovery, 2013, 03, 139-153.	0.5	28
218	Nicotinamide adenine dinucleotide levels in cells of developing chick limbs: Possible control of muscle and cartilage development. Developmental Biology, 1974, 38, 157-164.	0.9	27
219	The in vitro chondrogenic response of limb-bud mesenchyme to a water-soluble fraction prepared from demineralized bone matrix. Differentiation, 1985, 29, 230-237.	1.0	27
220	Poly(ADP-ribose) synthetase and chick limb mesenchymal cell differentiation. Developmental Biology, 1985, 112, 115-125.	0.9	27
221	Human Keratinocytes Contain Carbohydrates That Are Recognized by Keratan Sulfate – Specific Monoclonal Antibodies. Journal of Investigative Dermatology, 1990, 95, 347-352.	0.3	27
222	Generation of Pluripotent Stem Cells and Their Differentiation to the Chondrocytic Phenotype. , 2004, 100, 053-068.		27
223	Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. Journal of Controlled Release, 2004, 100, 257-266.	4.8	27
224	Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Tissue Engineering - Part A, 2018, 24, 335-350.	1.6	27
225	There Is No "Stem Cell Mess― Tissue Engineering - Part B: Reviews, 2019, 25, 291-293.	2.5	27
226	The site and sequence of action of 6-aminonicotinamide in causing bone malformations of embryonic chick limb and its relationship to normal development. Developmental Biology, 1972, 28, 71-83.	0.9	26
227	Progressive Approval: A Proposal for a New Regulatory Pathway for Regenerative Medicine. Stem Cells Translational Medicine, 2014, 3, 560-563.	1.6	26
228	Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis. Journal of Stem Cell Research & Therapy, 2017, 07, .	0.3	26
229	Cell-Based Therapies: The Nonresponder. Stem Cells Translational Medicine, 2018, 7, 762-766.	1.6	26
230	Poly ADP-ribose polymerase: Self-ADP-ribosylation, the stimulation by DNA, and the effects on nucleosome formation and stability. Archives of Biochemistry and Biophysics, 1979, 198, 60-69.	1.4	25
231	Eggshell Mineralization: A Case Study of a Bioprocessing Strategy. MRS Bulletin, 1992, 17, 27-31.	1.7	24
232	Analysis of the Developmental Potential of Conditionally Immortal Marrow-Derived Mesenchymal Progenitor Cells Isolated from the H-2K ^b -tsA58 Transgenic Mouse. Connective Tissue Research, 1996, 35, 93-99.	1.1	24
233	Cytokines and glucocorticoids differentially regulate APN/CD13 and DPPIV/CD26 enzyme activities in cultured human dermal fibroblasts. Archives of Dermatological Research, 2003, 295, 160-168.	1.1	24
234	Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science. Methods in Molecular Biology, 2016, 1416, 109-122.	0.4	24

#	Article	IF	CITATIONS
235	Mesenchymal stem cell therapy in a rat model of birth-trauma injury: functional improvements and biodistribution. International Urogynecology Journal, 2016, 27, 291-300.	0.7	23
236	Injectable liquid polymers extend the delivery of corticosteroids for the treatment of osteoarthritis. Journal of Controlled Release, 2018, 284, 112-121.	4.8	23
237	The teratogenic action of the nicotinamide analogs 3-acetylpyridine and 6-aminonicotinamide on developing chick embryos. The Journal of Experimental Zoology, 1971, 178, 351-357.	1.4	22
238	Histochemical analysis of newly synthesized and accumulated sulfated glycosaminoglycans during musculogenesis in the embryonic chick leg. Journal of Morphology, 1989, 201, 85-103.	0.6	22
239	Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 2021, 13, eaaz4499.	5.8	22
240	The Effect of Extended First Passage Culture on the Proliferation and Differentiation of Human Marrow-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2012, 1, 279-288.	1.6	21
241	A water-soluble fraction from adult bone stimulates the differentiation of cartilage in explants of embryonic muscle. Differentiation, 1988, 37, 47-52.	1.0	20
242	Transcriptional diversity in myogenesis. Developmental Biology, 1976, 54, 61-72.	0.9	19
243	Change in synthesis of sulfated glycoconjugates during muscle development, maturation and aging in embryonic to senescent CBF-1 mouse. Mechanisms of Ageing and Development, 1990, 53, 179-193.	2.2	19
244	Temporal and spatial distribution of type XII collagen in high cell density culture of periosteal-derived cells. Developmental Biology, 1990, 142, 481-485.	0.9	19
245	Immunohistochemical localization of a â^1⁄466 kD glycosylated phosphoprotein during development of the embryonic chick tibia. Calcified Tissue International, 1991, 48, 429-437.	1.5	19
246	Adult mesenchymal stem cells and the NO pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2695-2696.	3.3	19
247	Growth Factor Dose Tuning for Bone Progenitor Cell Proliferation and Differentiation on Resorbable Poly(propylene fumarate) Scaffolds. Tissue Engineering - Part C: Methods, 2016, 22, 904-913.	1.1	19
248	Nondestructive/Noninvasive Imaging Evaluation of Cellular Differentiation Progression During <i>In Vitro</i> Mesenchymal Stem Cell-Derived Chondrogenesis. Tissue Engineering - Part A, 2018, 24, 662-671.	1.6	19
249	Analysis of -5p and -3p Strands of miR-145 and miR-140 During Mesenchymal Stem Cell Chondrogenic Differentiation. Tissue Engineering - Part A, 2019, 25, 80-90.	1.6	19
250	Extracellular matrix and the maintenance of the differentiated state: Proteoglycans synthesized by replated chondrocytes and nonchondrocytes. Developmental Biology, 1983, 99, 132-144.	0.9	18
251	Cell delivery and tissue regeneration. Journal of Controlled Release, 1990, 11, 157-165.	4.8	18
252	REGULATED EXPRESSION OF CHONDROITIN SULFATES AT SITES OF EPITHELIAL—MESENCHYMAL INTERACTION: SPATIOâ€TEMPORAL PATTERNING IDENTIFIED WITH ANTIâ€CHONDROITIN SULFATE MONOCLO ANTIBODIES. International Journal of Developmental Neuroscience, 1996, 14, 233-248.	NALO.7	18

#	Article	IF	CITATIONS
253	Comparison of the capacity of nicotinamide and nicotinic acid to relieve the effects of muscle and cartilage teratogens in developing chick embryos. Developmental Biology, 1972, 28, 344-351.	0.9	17
254	Micrometer Scale Guidance of Mesenchymal Stem Cells to Form Structurally Oriented Cartilage Extracellular Matrix. Tissue Engineering - Part A, 2013, 19, 1081-1090.	1.6	17
255	Proteoglycans in Leiomyoma and Normal Myometrium: bundance, Steroid Hormone Control, and Implications for Pathophysiology. Reproductive Sciences, 2016, 23, 302-309.	1.1	17
256	The 3Rs of Cell Therapy. Stem Cells Translational Medicine, 2017, 6, 17-21.	1.6	17
257	Mesenchymal Stem Cells in Regenerative Medicine. , 2019, , 219-227.		16
258	Bolton-Hunter reagent as a vital stain for developing systems. Developmental Biology, 1982, 90, 419-429.	0.9	15
259	Discrete Stages Within the Osteogenic Lineage are Revealed by Alterations in the Cell Surface Architecture of Embryonic Bone Cells. Connective Tissue Research, 1989, 20, 73-79.	1.1	15
260	Growth and differentiation of stage 24 limb mesenchyme cells in a serum-free chemically defined medium. Experimental Cell Research, 1989, 183, 45-61.	1.2	15
261	Construction of a Bilayered Dermal Equivalent Containing Human Papillary and Reticular Dermal Fibroblasts: Use of Fluorescent Vital Dyes. Tissue Engineering, 1996, 2, 39-49.	4.9	15
262	Sustained Wnt protein expression in chondral constructs from mesenchymal stem cells. Journal of Cellular Physiology, 2005, 203, 6-14.	2.0	15
263	The development of hormonal responses of cultured embryonic chick limb mesenchymal cells. Developmental Biology, 1981, 86, 61-68.	0.9	14
264	Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering. Carbohydrate Research, 1987, 160, 329-341.	1.1	14
265	Structural characterization of chick embryonic skeletal muscle chondroitin sulfate proteoglycan. Connective Tissue Research, 1989, 19, 35-50.	1.1	14
266	The effects of β-d-xynoside on the synthesis of proteolgycans by skeletal muscle: Lack of effect on decorin and differential polymerization of core protein-bound and xyloside-linked chondroitin sulfate. Matrix Biology, 1994, 14, 121-133.	1.5	14
267	Mesenchymal Stem Cells for Tissue Engineering. , 2006, , 23-59.		14
268	Association of the C-Propeptide of Type II Collagen with Mineralization of Embryonic Chick Long Bone and Sternal Development. Connective Tissue Research, 1989, 23, 179-199.	1.1	13
269	Bone Development. Novartis Foundation Symposium, 1988, 136, 3-21.	1.2	13
270	Cellular Interactions and Bone Healing Responses to a Novel Porous Tricalcium Phosphate Bone Craft Material. Orthopedics, 2004, 27, s167-73.	0.5	13

#	Article	IF	CITATIONS
271	Efficacy and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2022, 11, 688-703.	1.6	13
272	Adhesion of osteoclasts and monocytes to developing bone. The Journal of Experimental Zoology, 1982, 224, 345-354.	1.4	12
273	Advances in mesenchymal stem cell biology. Current Opinion in Orthopaedics, 2004, 15, 341-346.	0.3	12
274	Are All Adult Stem Cells The Same?. Regenerative Engineering and Translational Medicine, 2015, 1, 4-10.	1.6	12
275	Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling. Journal of Inflammation, 2017, 14, 18.	1.5	12
276	Angiogenic Potential of Tissue Engineered Cartilage From Human Mesenchymal Stem Cells Is Modulated by Indian Hedgehog and Serpin E1. Frontiers in Bioengineering and Biotechnology, 2020, 8, 327.	2.0	12
277	Donor-Defined Mesenchymal Stem Cell Antimicrobial Potency Against Nontuberculous Mycobacterium. Stem Cells Translational Medicine, 2021, 10, 1202-1216.	1.6	12
278	The Avian Eggshell as a Model of Biomineralization. Materials Research Society Symposia Proceedings, 1990, 218, 193.	0.1	11
279	Biological evaluation of a new C-xylopyranoside derivative (C-Xyloside) and its role in glycosaminoglycan biosynthesis. European Journal of Dermatology, 2011, 21, 359-370.	0.3	11
280	Adult mesenchymal stem cells and women's health. Menopause, 2015, 22, 131-135.	0.8	11
281	Enhancing Cystic Fibrosis Immune Regulation. Frontiers in Pharmacology, 2021, 12, 573065.	1.6	11
282	Embryonic development and the principles of tissue engineering. Novartis Foundation Symposium, 2003, 249, 17-25; discussion 25-33, 170-4, 239-41.	1.2	11
283	Proteoglycan Synthesis in Vitamin D-Deficient Cartilage: Recovery from Vitamin D deficiency. Connective Tissue Research, 1989, 19, 135-147.	1.1	10
284	<i>In Vivo</i> Remodeling. Annals of the New York Academy of Sciences, 2002, 961, 307-308.	1.8	10
285	Imaging Stem Cell Differentiation for Cell-Based Tissue Repair. Methods in Enzymology, 2012, 506, 247-263.	0.4	10
286	Rapid Detection of Shear-Induced Damage in Tissue-Engineered Cartilage Using Ultrasound. Tissue Engineering - Part C: Methods, 2018, 24, 443-456.	1.1	10
287	Enhanced Chondrogenic Capacity of Mesenchymal Stem Cells After TNFα Pre-treatment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 658.	2.0	10
288	Transient expression of type II collagen and tissue mobilization during development of the scleral ossicle, a membranous bone, in the chick embryo. Developmental Dynamics, 1994, 200, 212-226.	0.8	9

#	Article	IF	CITATIONS
289	ROCK Inhibition Promotes the Development of Chondrogenic Tissue by Improved Mass Transport. Tissue Engineering - Part A, 2018, 24, 1218-1227.	1.6	9
290	Human mesenchymal stem cells induced to differentiate as chondrocytes follow a biphasic pattern of extracellular matrix production. Journal of Orthopaedic Research, 2018, 36, 1757-1766.	1.2	9
291	Extravascular fluid dynamics of the embryonic chick wing bud. Developmental Biology, 1988, 126, 7-18.	0.9	8
292	Initial Characterization of small Proteoglycans Synthesized by Embryonic Chick Leg Muscle-Associated Connective Tissues. Connective Tissue Research, 1988, 17, 99-118.	1.1	8
293	Mesenchymal Stem Cells. , 2004, , 299-308.		8
294	MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage. Tissue Engineering - Part A, 2022, 28, 254-269.	1.6	7
295	Identification of glycogen as the major xylose acceptor in polysomal preparations from chick embryo cartilage cultures. Archives of Biochemistry and Biophysics, 1978, 191, 687-697.	1.4	6
296	Effect of 4-methylumbelliferyl-β-d-xyloside on collagen synthesis in chick limb bud mesenchymal cell cultures. Developmental Biology, 1982, 90, 24-30.	0.9	6
297	The relationship of nicotinamide adenine dinucleotide to the chondrogenic differentiation of limb mesenchymal cells. Developmental Biology, 1985, 111, 232-242.	0.9	6
298	Tissue Engineering: Then, Now, and the Future. Tissue Engineering - Part A, 2019, 25, 515-517.	1.6	6
299	Glucose Availability Affects Extracellular Matrix Synthesis During Chondrogenesis <i>In Vitro</i> . Tissue Engineering - Part A, 2021, 27, 1321-1332.	1.6	6
300	The Regeneration of Skeletal Tissues With Mesenchymal Stem Cells. , 1998, , 471-480.		6
301	Altered cartilage proteoglycans synthesized by chick limb bud chondrocytes cultured in serum-free defined medium. Experimental Cell Research, 1989, 183, 62-71.	1.2	5
302	Human and Rat Bone Marrow-Derived Mesenchymal Stem Cells Differ in Their Response to Fibroblast Growth Factor and Platelet-Derived Growth Factor. Tissue Engineering - Part A, 2018, 24, 1831-1843.	1.6	5
303	Transcriptome dynamics of long noncoding RNAs and transcription factors demarcate human neonatal, adult, and human mesenchymal stem cellâ€derived engineered cartilage. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 29-44.	1.3	5
304	An Integrated Multiâ€Function Heterogeneous Biochemical Circuit for Highâ€Resolution Electrochemistryâ€Based Genetic Analysis. Angewandte Chemie, 2020, 132, 20726-20732.	1.6	5
305	Intrarenal injection of mesenchymal stem cell for treatment of lupus nephritis in mice – a pilot study. Lupus, 2021, 30, 52-60.	0.8	5
306	Kindlin-3 mutation in mesenchymal stem cells results in enhanced chondrogenesis. Experimental Cell Research, 2021, 399, 112456.	1.2	5

#	Article	IF	CITATIONS
307	Quantitative microscopy in murine models of lung inflammation. , 2011, 33, 245-52.		5
308	Structure of native proteoglycan aggregates from chick limb-bud chondrocytes. Biopolymers, 1986, 25, 931-946.	1.2	4
309	Three-dimensional reconstruction and cross-sectional anatomy of the thigh musculature of the developing chick embryo (Gallus gallus). Journal of Morphology, 1991, 208, 293-309.	0.6	4
310	Comparison of the cartilage proteoglycan core protein synthesized by chondrocytes of different ages. Connective Tissue Research, 1991, 25, 311-320.	1.1	4
311	Breakout Session 2: Stem Cells for Gene Delivery. Clinical Orthopaedics and Related Research, 2000, 379, S98-S100.	0.7	4
312	Mesenchymal Stem Cells. , 2009, , 243-248.		4
313	Development of a Functional Biomarker for Use in Cell-Based Therapy Studies in Seropositive Rheumatoid Arthritis. Stem Cells Translational Medicine, 2016, 5, 628-631.	1.6	4
314	Ultrasound-guided Intracardiac Injection of Human Mesenchymal Stem Cells to Increase Homing to the Intestine for Use in Murine Models of Experimental Inflammatory Bowel Diseases. Journal of Visualized Experiments, 2017, , .	0.2	4
315	Dynamics of Intrinsic Glucose Uptake Kinetics in Human Mesenchymal Stem Cells During Chondrogenesis. Annals of Biomedical Engineering, 2018, 46, 1896-1910.	1.3	4
316	SAT0010â€FUNCTIONAL BIOMARKER DEVELOPMENT FOR CELL-BASED THERAPY IN RHEUMATOID ARTHRITIS. , 2019, , .		4
317	The Releasate of Avascular Cartilage Demonstrates Inherent Pro-Angiogenic Properties <i>In Vitro</i> and <i>In Vivo</i> . Cartilage, 2021, 13, 559S-570S.	1.4	4
318	Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. , 1997, 64, 295.		4
319	Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. , 1996, 167, 523.		4
320	MSCs in Regenerative Medicine. , 2011, , 253-262.		4
321	Dental Pulp Cells with Multi-Potential for Differentiation to Odontoblast and Chondroblast. Journal of Hard Tissue Biology, 2003, 12, 49-55.	0.2	4
322	Noncollagenous matrix protein-enhanced mineral deposition in osteoblast-like cell culture. Journal of Bone and Mineral Metabolism, 1994, 12, 17-25.	1.3	3
323	Genetically Linked Scientists. Journal of Experimental Medicine, 2000, 191, 1-4.	4.2	3

Design Parameters For Functional Tissue Engineering. , 2003, , 129-138.

3

#	Article	IF	CITATIONS
325	Pericytes as the Source of Mesenchymal Stem Cells. , 2013, , 233-250.		3
326	Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1 $\hat{l}\pm$. , 1996, 166, 585.		3
327	Poly(ADP-Ribose) Synthetase and Cell Differentiation. Proceedings in Life Sciences, 1985, , 388-396.	0.5	3
328	Poly(ADP-ribose) and the Differentiation of Embryonic Tissue. , 1982, , 389-405.		3
329	Separation of transcriptively active and inactive chromatin Agarose gel chromatography. Nucleic Acids and Protein Synthesis, 1978, 520, 368-375.	1.7	2
330	Anti-Inflammatory Therapeutic Development and Optimization of Umbilical Cord Tissue Derived Mesenchymal Stem Cells. Journal of Stem Cell Research & Therapy, 2018, 08, .	0.3	2
331	Author Accountability in Biomedical Research. Stem Cells and Development, 2018, 27, 1671-1673.	1.1	2
332	Transcriptomic Analysis of Human Mesenchymal Stem Cell Therapy in Incontinent Rat Injured Urethra. Tissue Engineering - Part A, 2020, 26, 792-810.	1.6	2
333	Fundamentals of Stem Cell Tissue Engineering. , 2007, , 1-1-1-10.		2
334	Allogeneic Mesenchymal Stem Cell-Based Treatment Legislation in Latin America: The Need for Standardization in a Medical Tourism Context. Stem Cells and Development, 2022, 31, 143-162.	1.1	2
335	Hydroxylapatite thermal fractionation of chromatin and DNA. Biochemistry, 1978, 17, 3480-3486.	1.2	1
336	Attempted separation of transcriptively active and inactive chromatin by hydroxylapatite thermal chromatography. Biochemistry, 1978, 17, 3487-3495.	1.2	1
337	Bioactive Factors in Bone: Marshall R. Urist, M.D. May 1988 Kerrville, Texas. Connective Tissue Research, 1989, 23, 103-106.	1.1	1
338	HYALURONAN AND TISSUE ENGINEERING. , 2002, , 45-54.		1
339	Chair's Introduction. Novartis Foundation Symposium, 2008, , 1-1.	1.2	1
340	Cell Sources for Tissue Engineering: Mesenchymal Stem Cells. , 2013, , 1159-1164.		1
341	Mesenchymal Stem Cells in Regenerative Medicine. , 2013, , 493-502.		1
342	Extracellular Matrix and Muscle Formation. , 1991, , 285-292.		1

#	Article	IF	CITATIONS
343	Characterization of placental proteoglycans. FASEB Journal, 2007, 21, A269.	0.2	1
344	Bone Formation: The Rules for Fabricating a Composite Ceramic. Materials Research Society Symposia Proceedings, 1989, 174, 9.	0.1	0
345	Oriented Collagen Matrices: the Control of Biomineralizaton in Bone. Materials Research Society Symposia Proceedings, 1990, 218, 275.	0.1	0
346	Developmental and Aging Changes of Chondroitin/Dermatan Sulfate Proteoglycans. , 0, , 729-742.		0
347	2010 Lifetime Achievement Award of Tissue Engineering and Regenerative Medicine International Society—North America: Arnold I. Caplan, Ph.D Tissue Engineering - Part A, 2011, 17, 267-267.	1.6	0
348	Nature or Nurture. , 2016, , 227-240.		0
349	Innentitelbild: Exploring the Transâ€Cleavage Activity of CRISPRâ€Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor (Angew. Chem. 48/2019). Angewandte Chemie, 2019, 131, 17242-17242.	1.6	0
350	The Habitat Assay, a Platform to Study In Vivo Properties of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2020, 26, 1378-1387.	1.6	0
351	Innentitelbild: An Integrated Multiâ€Function Heterogeneous Biochemical Circuit for Highâ€Resolution Electrochemistryâ€Based Genetic Analysis (Angew. Chem. 46/2020). Angewandte Chemie, 2020, 132, 20426-20426.	1.6	0
352	Placebo Controls: Now???. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 9.	1.0	0
353	POTENTIAL USE OF A NOVEL HYALURONAN-BASED DELIVERY VEHICLE IN BONE REGENERATION. , 2002, , 67-70.		0
354	CARTILAGE REPAIR WITH BONE MARROW IN A HYALURONAN-BASED SCAFFOLD. , 2002, , 63-66.		0
355	A Rapid Seeding Technique for the Assembly of Large Cell/Scaffold Composite Constructs. Tissue Engineering, 2006, .	4.9	0
356	Future of Cell-Based Therapies in Orthopedic Sports Medicine. , 2014, , 1-6.		0
357	Future of Cell-Based Therapies in Orthopedic Sports Medicine. , 2015, , 3217-3222.		0
358	MSCs and Asthma. Pancreatic Islet Biology, 2016, , 7-24.	0.1	0
359	Stem Cells 101: Letter to the Editor. American Journal of Sports Medicine, 2021, 49, NP69-NP70.	1.9	0