Jamie Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ensembl 2021. Nucleic Acids Research, 2021, 49, D884-D891.	14.5	1,231
2	Ensembl 2022. Nucleic Acids Research, 2022, 50, D988-D995.	14.5	1,103
3	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
4	Ensembl 2020. Nucleic Acids Research, 2020, 48, D682-D688.	14.5	1,076
5	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
6	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
7	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
8	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
9	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
10	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
11	Rare, protein-truncating variants in <i>ATM</i> , <i>CHEK2</i> and <i>PALB2</i> , but not <i>XRCC2</i> , are associated with increased breast cancer risks. Journal of Medical Genetics, 2017, 54, 732-741.	3.2	68
12	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	7.1	51
13	Inherited mutations in <i>BRCA1</i> and <i>BRCA2</i> in an unselected multiethnic cohort of Asian patients with breast cancer and healthy controls from Malaysia. Journal of Medical Genetics, 2018, 55, 97-103.	3.2	34
14	Prevalence of <i>BRCA1</i> and <i>BRCA2</i> pathogenic variants in a large, unselected breast cancer cohort. International Journal of Cancer, 2019, 144, 1195-1204.	5.1	31
15	Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes. Human Molecular Genetics, 2018, 27, 853-859.	2.9	20
16	Differential Burden of Rare and Common Variants on Tumor Characteristics, Survival, and Mode of Detection in Breast Cancer. Cancer Research, 2018, 78, 6329-6338.	0.9	19
17	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
18	Splicing predictions, minigene analyses, and <scp>ACMG</scp> â€ <scp>AMP</scp> clinical classification of 42 germline <scp><i>PALB2</i></scp> spliceâ€site variants. Journal of Pathology, 2022, 256, 321-334.	4.5	16

JAMIE ALLEN

#	Article	IF	CITATIONS
19	Predicting the Likelihood of Carrying a <i>BRCA1</i> or <i>BRCA2</i> Mutation in Asian Patients With Breast Cancer. Journal of Clinical Oncology, 2022, 40, 1542-1551.	1.6	14
20	Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers, 2020, 12, 3771.	3.7	10
21	RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers, 2021, 13, 2845.	3.7	10
22	Targeted Resequencing of the Coding Sequence of 38 Genes Near Breast Cancer GWAS Loci in a Large Case–Control Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 822-825.	2.5	7
23	Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. Npj Breast Cancer, 2021, 7, 52.	5.2	7
24	Minigeneâ€based splicing analysis and <scp>ACMG</scp> / <scp>AMP</scp> â€based tentative classification of 56 <scp><i>ATM</i></scp> variants. Journal of Pathology, 2022, 258, 83-101.	4.5	5
25	Breast Cancer Risk in Women from Ghana Carrying Rare Germline Pathogenic Mutations. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1593-1601.	2.5	3
26	VEXOR: an integrative environment for prioritization of functional variants in fine-mapping analysis. Bioinformatics, 2017, 33, 1389-1391.	4.1	2
27	Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. Cancers, 2022, 14, 3363.	3.7	2