Janine Ezendam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547785/publications.pdf

Version: 2024-02-01

304743 330143 1,461 49 22 37 h-index citations g-index papers 53 53 53 1756 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Usefulness and Applicability of Integrated Strategy Approaches in Toxicology. Applied in Vitro Toxicology, 2021, 7, 89-90.	1.1	O
2	Occupational exposure to hexavalent chromium. Part I. Hazard assessment of non-cancer health effects. Regulatory Toxicology and Pharmacology, 2021, 126, 105048.	2.7	29
3	Predictive Tests for Irritants and Allergens: Human, Animal, and In Vitro Tests., 2021,, 175-192.		1
4	Applying non-animal strategies for assessing skin sensitisation report from an EPAA/cefic-LRI/IFRA Europe cross sector workshop, ECHA helsinki, February 7th and 8th 2019. Regulatory Toxicology and Pharmacology, 2019, 109, 104477.	2.7	7
5	The virtual human in chemical safety assessment. Current Opinion in Toxicology, 2019, 15, 26-32.	5.0	7
6	An in vitro coculture system for the detection of sensitization following aerosol exposure. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 403-418.	1.5	12
7	https://www.altex.org/index.php/altex/article/view/1339. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 682-699.	1.5	42
8	Predictive Tests for Irritants and Allergens: Human, Animal, and In Vitro Tests., 2019, , 1-18.		0
9	Skin sensitisation quantitative risk assessment (QRA) based on aggregate dermal exposure to methylisothiazolinone in personal care and household cleaning products. Food and Chemical Toxicology, 2018, 112, 242-250.	3.6	22
10	Validation redefined. Toxicology in Vitro, 2018, 46, 163-165.	2.4	9
11	Predicting Chemically Induced Skin Sensitization by Using In Chemico / In Vitro Methods. Methods in Molecular Biology, 2018, 1800, 485-504.	0.9	5
12	An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Chemicals: Building Evidence to Support the Utility of <i>In Vitro </i> and <i>In Silico </i> Methods in a Regulatory Context. Applied in Vitro Toxicology, 2017, 3, 213-226.	1.1	46
13	Assessment of recent developmental immunotoxicity studies with bisphenol A in the context of the 2015 EFSA t-TDI. Reproductive Toxicology, 2016, 65, 448-456.	2.9	40
14	Can the Direct Peptide Reactivity Assay Be Used for the Identification of Respiratory Sensitization Potential of Chemicals?. Toxicological Sciences, 2016, 153, 361-371.	3.1	19
15	State of the art in non-animal approaches for skin sensitization testing: from individual test methods towards testing strategies. Archives of Toxicology, 2016, 90, 2861-2883.	4.2	95
16	The involvement of the Toll-like receptor signaling and Nrf2-Keap1 pathways in the <i>in vitro < /i>regulation of IL-8 and HMOX1 for skin sensitization. Journal of Immunotoxicology, 2016, 13, 1-6.</i>	1.7	14
17	Development of an in vitro test to identify respiratory sensitizers in bronchial epithelial cells using gene expression profiling. Toxicology in Vitro, 2015, 30, 274-280.	2.4	12
18	Quantitative risk assessment of the aggregate dermal exposure to the sensitizing fragrance geraniol in personal care products and household cleaning agents. Regulatory Toxicology and Pharmacology, 2015, 73, 9-18.	2.7	28

#	Article	IF	Citations
19	A Dose-Response Modeling Approach Shows That Effects From Mixture Exposure to the Skin Sensitizers Isoeugenol and Cinnamal Are in Line With Dose Addition and Not With Synergism. Toxicological Sciences, 2015, 147, 68-74.	3.1	29
20	Human relevance of an in vitro gene signature in HaCaT for skin sensitization. Toxicology in Vitro, 2015, 29, 81-84.	2.4	11
21	World Health Organization estimates of the global and regional disease burden of four foodborne chemical toxins, 2010: a data synthesis. F1000Research, 2015, 4, 1393.	1.6	70
22	Anchoring molecular mechanisms to the adverse outcome pathway for skin sensitization: Analysis of existing data. Critical Reviews in Toxicology, 2014, 44, 590-599.	3.9	20
23	Evaluation of <i>In Silico </i> Models for the Identification of Respiratory Sensitizers. Toxicological Sciences, 2014, 142, 385-394.	3.1	26
24	Assessment of the risk of respiratory sensitization from fragrance allergens released by air fresheners. Inhalation Toxicology, 2014, 26, 310-318.	1.6	18
25	A critical appraisal of the process of regulatory implementation of novelin vivoandin vitromethods for chemical hazard and risk assessment. Critical Reviews in Toxicology, 2014, 44, 876-894.	3.9	28
26	Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regulatory Toxicology and Pharmacology, 2014, 69, 371-379.	2.7	78
27	Induction of skin sensitization is augmented in Nrf2-deficient mice. Archives of Toxicology, 2013, 87, 763-766.	4.2	21
28	Transfer of a two-tiered keratinocyte assay: IL-18 production by NCTC2544 to determine the skin sensitizing capacity and epidermal equivalent assay to determine sensitizer potency. Toxicology in Vitro, 2013, 27, 1135-1150.	2.4	39
29	Evaluation of the performance of the reduced local lymph node assay for skin sensitization testing. Regulatory Toxicology and Pharmacology, 2013, 66, 66-71.	2.7	5
30	Applicability of a keratinocyte gene signature to predict skin sensitizing potential. Toxicology in Vitro, 2013, 27, 314-322.	2.4	50
31	Unraveling toxicological mechanisms and predicting toxicity classes with gene dysregulation networks. Journal of Applied Toxicology, 2013, 33, 1407-1415.	2.8	6
32	A quantitative approach to assess the potency of skin sensitizers in the elicitation phase. Toxicology, 2012, 299, 20-24.	4.2	8
33	Effects of pooling RNA from samples treated with different compounds for determining class specific biomarkers and processes in toxicogenomics. Toxicology in Vitro, 2011, 25, 1841-1847.	2.4	7
34	Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure. Toxicology, 2009, 261, 103-111.	4.2	48
35	Lactobacillus casei Shirota does not decrease the food allergic response to peanut extract in Brown Norway ratsâ ⁻ †. Toxicology, 2008, 249, 140-145.	4.2	11
36	Gene expression changes in the mesenteric lymph nodes of rats after oral peanut extract exposure. Journal of Immunotoxicology, 2008, 5, 385-394.	1.7	7

#	Article	IF	Citations
37	<i>Lactobacillus casei</i> Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. British Journal of Nutrition, 2008, 99, 83-90.	2.3	48
38	The importance of dietary control in the development of a peanut allergy model in Brown Norway rats. Methods, 2007, 41, 99-111.	3.8	24
39	Bis(tributyltin)oxide (TBTO) decreases the food allergic response against peanut and ovalbumin in Brown Norway rats. Toxicology, 2007, 239, 68-76.	4.2	3
40	Probiotics: Immunomodulation and Evaluation of Safety and Efficacy. Nutrition Reviews, 2006, 64, 1-14.	5 . 8	93
41	Evaluation of immunomodulation by Lactobacillus casei Shirota: Immune function, autoimmunity and gene expression. International Journal of Food Microbiology, 2006, 112, 8-18.	4.7	81
42	Probiotics: Immunomodulation and Evaluation of Safety and Efficacy. Nutrition Reviews, 2006, 64, 1-14.	5.8	5
43	Macrophages are involved in hexachlorobenzene-induced adverse immune effects. Toxicology and Applied Pharmacology, 2005, 209, 19-27.	2.8	15
44	Research Articles Mechanisms of Hexachlorobenzene-Induced Adverse Immune Effects in Brown Norway Rats. Journal of Immunotoxicology, 2005, 1, 167-175.	1.7	9
45	Toxicogenomics of subchronic hexachlorobenzene exposure in Brown Norway rats Environmental Health Perspectives, 2004, 112, 782-791.	6.0	60
46	Hexachlorobenzene-induced Immunopathology in Brown Norway Rats is Partly Mediated by T Cells. Toxicological Sciences, 2004, 78, 88-95.	3.1	20
47	Immunomodulatory Effects of Tetrachlorobenzoquinone, a Reactive Metabolite of Hexachlorobenzene. Chemical Research in Toxicology, 2003, 16, 688-694.	3.3	19
48	Toxicogenomics as a Tool to Assess Immunotoxicity., 0,, 127-142.		0
49	Keratinocytes, Innate Immunity and Allergic Contact Dermatitis - Opportunities for the Development of In Vitro Assays to Predict the Sensitizing Potential of Chemicals. , 0, , .		5