Chiara Maccato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654775/publications.pdf

Version: 2024-02-01

206 papers 7,596 citations

57631 44 h-index 74018 75 g-index

218 all docs

218 docs citations

218 times ranked

9652 citing authors

#	Article	IF	CITATIONS
1	Enhanced photocatalytic removal of NOx gases by β-Fe2O3/CuO and β-Fe2O3/WO3 nanoheterostructures. Chemical Engineering Journal, 2022, 430, 132757.	6.6	16
2	A versatile Fe(II) diketonate diamine adduct: Preparation, characterization and validation in the chemical vapor deposition of iron oxide nanomaterials. Materials Chemistry and Physics, 2022, 277, 125534.	2.0	7
3	Metal Oxide Nanosystems As Chemoresistive Gas Sensors for Chemical Warfare Agents: A Focused Review. Advanced Materials Interfaces, 2022, 9, .	1.9	14
4	Tailoring oxygen evolution performances of carbon nitride systems fabricated by electrophoresis through Ag and Au plasma functionalization. Chemical Engineering Journal, 2022, 448, 137645.	6.6	12
5	Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Applied Catalysis B: Environmental, 2021, 284, 119684.	10.8	73
6	Facile preparation of a cobalt diamine diketonate adduct as a potential vapor phase precursor for Co ₃ O ₄ films. Dalton Transactions, 2021, 50, 10374-10385.	1.6	9
7	A Cu(<scp>ii</scp>)-MOF based on a propargyl carbamate-functionalized isophthalate ligand. RSC Advances, 2021, 11, 20429-20438.	1.7	5
8	The Early Steps of Molecule-to-Material Conversion in Chemical Vapor Deposition (CVD): A Case Study. Molecules, 2021, 26, 1988.	1.7	9
9	Plasmaâ€Assisted Synthesis of Co ₃ O ₄ â€Based Electrocatalysts on Ni Foam Substrates for the Oxygen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2100763.	1.9	12
10	Analysis of Co3O4-SnO2 and Co3O4-Fe2O3 nanosystems by x-ray photoelectron spectroscopy. Surface Science Spectra, 2021, 28, 024002.	0.3	3
11	Tailored Co ₃ O ₄ -Based Nanosystems: Toward Photocatalysts for Air Purification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44520-44530.	4.0	7
12	Plasmaâ€Assisted Synthesis of Co ₃ O ₄ â€Based Electrocatalysts on Ni Foam Substrates for the Oxygen Evolution Reaction (Adv. Mater. Interfaces 18/2021). Advanced Materials Interfaces, 2021, 8, 2170099.	1.9	0
13	Fe2O3-WO3 and Fe2O3-CuO nanoheterostructures by XPS. Surface Science Spectra, 2021, 28, .	0.3	2
14	Manganese Oxide Nanoarchitectures as Chemoresistive Gas Sensors to Monitor Fruit Ripening. Journal of Nanoscience and Nanotechnology, 2020, 20, 3025-3030.	0.9	15
15	Multilayer assemblies of a Cu-phthalocyanine with Dawson type polyoxometalates (POMs) for the electrocatalytic reduction of phosphate. Journal of Electroanalytical Chemistry, 2020, 858, 113770.	1.9	13
16	Au–Manganese Oxide Nanostructures by a Plasmaâ€Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemicoâ€Physical Investigation. Advanced Sustainable Systems, 2020, , 2000177.	2.7	5
17	Engineering Au/MnO ₂ hierarchical nanoarchitectures for ethanol electrochemical valorization. Journal of Materials Chemistry A, 2020, 8, 16902-16907.	5.2	18
18	Plasma-Assisted Chemical Vapor Deposition of F-Doped MnO2 Nanostructures on Single Crystal Substrates. Nanomaterials, 2020, 10, 1335.	1.9	5

#	Article	IF	Citations
19	XPS characterization of Mn2O3 nanomaterials functionalized with Ag and SnO2. Surface Science Spectra, 2020, 27, .	0.3	8
20	MnO2 nanomaterials functionalized with Ag and SnO2: An XPS study. Surface Science Spectra, 2020, 27, 024005.	0.3	6
21	Quasi-1D Mn ₂ O ₃ Nanostructures Functionalized with First-Row Transition-Metal Oxides as Oxygen Evolution Catalysts. ACS Applied Nano Materials, 2020, 3, 9889-9898.	2.4	12
22	Dual Improvement of <i>β</i> àêMnO ₂ Oxygen Evolution Electrocatalysts via Combined Substrate Control and Surface Engineering. ChemCatChem, 2020, 12, 5984-5992.	1.8	5
23	Copper Vanadate Nanobelts as Anodes for Photoelectrochemical Water Splitting: Influence of CoO <i></i> Overlayers on Functional Performances. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31448-31458.	4.0	17
24	Hydrogen Gas Sensing Performances of p-Type Mn3O4 Nanosystems: The Role of Built-in Mn3O4/Ag and Mn3O4/SnO2 Junctions. Nanomaterials, 2020, 10, 511.	1.9	14
25	Layer-by-layer assembly of graphene oxide and 12-molybdosilicate composite films for the electrocatalytic reduction of chloroform in neutral aqueous solution. Electrochimica Acta, 2020, 343, 135987.	2.6	5
26	Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Applied Surface Science, 2020, 512, 145667.	3.1	35
27	Nanoscale Mn ₃ O ₄ Thin Film Photoelectrodes Fabricated by a Vapor-Phase Route. ACS Applied Energy Materials, 2019, 2, 8294-8302.	2.5	6
28	Mn ₃ O ₄ Nanomaterials Functionalized with Fe ₂ O ₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties. Advanced Materials Interfaces, 2019, 6, 1901239.	1.9	12
29	Multi-functional MnO ₂ nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale, 2019, 11, 98-108.	2.8	30
30	Sensing Nitrogen Mustard Gas Simulant at the ppb Scale via Selective Dual-Site Activation at Au/Mn ₃ O ₄ Interfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23692-23700.	4.0	26
31	Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO ₂ for Photoelectrochemical Water Splitting. Advanced Sustainable Systems, 2019, 3, 1900046.	2.7	15
32	Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications. ACS Applied Materials & Interfaces, 2019, 11, 15881-15890.	4.0	7
33	High Magnetic Coercivity in Nanostructured Mn3O4 Thin Films Obtained by Chemical Vapor Deposition. ACS Applied Nano Materials, 2019, 2, 1704-1712.	2.4	9
34	Chemical Vapor Deposition: Mn ₃ O ₄ Nanomaterials Functionalized with Fe ₂ O ₃ and ZnO: Fabrication, Characterization, and Ammonia Sensing Properties (Adv. Mater. Interfaces 24/2019). Advanced Materials Interfaces, 2019, 6, 1970151.	1.9	0
35	Structure and properties of Mn3O4 thin films grown on single crystal substrates by chemical vapor deposition. Materials Chemistry and Physics, 2019, 223, 591-596.	2.0	16
36	Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips. Crystal Growth and Design, 2018, 18, 2579-2587.	1.4	10

3

#	Article	IF	CITATIONS
37	Toward the Detection of Poisonous Chemicals and Warfare Agents by Functional Mn ₃ O ₄ Nanosystems. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12305-12310.	4.0	28
38	Supported Mn ₃ O ₄ Nanosystems for Hydrogen Production through Ethanol Photoreforming. Langmuir, 2018, 34, 4568-4574.	1.6	13
39	Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups. Applied Surface Science, 2018, 440, 1235-1243.	3.1	O
40	WO ₃ -decorated ZnO nanostructures for light-activated applications. CrystEngComm, 2018, 20, 1282-1290.	1.3	28
41	Manganese(II) Molecular Sources for Plasma-Assisted CVD of Mn Oxides and Fluorides: From Precursors to Growth Process. Journal of Physical Chemistry C, 2018, 122, 1367-1375.	1.5	34
42	Controllable vapor phase fabrication of F:Mn ₃ O ₄ thin films functionalized with Ag and TiO ₂ . CrystEngComm, 2018, 20, 3016-3024.	1.3	15
43	Magnetic properties of ε iron(III) oxide nanorod arrays functionalized with gold and copper(II) oxide. Applied Surface Science, 2018, 427, 890-896.	3.1	8
44	Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO ₂ Nanomaterials. Inorganic Chemistry, 2018, 57, 14564-14573.	1.9	9
45	ZnO-based nanocomposites prepared by a vapor phase route, investigated by XPS. Surface Science Spectra, 2018, 25, .	0.3	3
46	XPS investigation of F-doped MnO2 nanosystems fabricated by plasma assisted-CVD. Surface Science Spectra, 2018, 25, .	0.3	12
47	Plasmaâ€Assisted Growth of βâ€MnO ₂ Nanosystems as Gas Sensors for Safety and Food Industry Applications. Advanced Materials Interfaces, 2018, 5, 1800792.	1.9	28
48	Tracking Fluorescent Polyoxometalates within Cells. European Journal of Inorganic Chemistry, 2018, 2018, 4955-4961.	1.0	13
49	Metal oxide electrodes for photo-activated water splitting. , 2018, , 19-48.		4
50	Tailoring Vapor-Phase Fabrication of Mn ₃ O ₄ Nanosystems: From Synthesis to Gas-Sensing Applications. ACS Applied Nano Materials, 2018, 1, 2962-2970.	2.4	26
51	Electrochemical, surface and electrocatalytic properties of layer-by-layer multilayer assemblies composed of silver nanoparticles and a Ni(II)-crown type polyoxometalate. Journal of Electroanalytical Chemistry, 2018, 824, 75-82.	1.9	9
52	Mn3O4 thin films functionalized with Ag, Au, and TiO2 analyzed using x-ray photoelectron spectroscopy. Surface Science Spectra, 2018, 25, 014003.	0.3	12
53	Doping of TiO ₂ as a tool to optimize the water splitting efficiencies of titania–hematite photoanodes. Sustainable Energy and Fuels, 2017, 1, 199-206.	2.5	17
54	Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700161.	1.9	30

#	Article	IF	CITATIONS
55	Molecular Engineering of Mn ^{II} Diamine Diketonate Precursors for the Vapor Deposition of Manganese Oxide Nanostructures. Chemistry - A European Journal, 2017, 23, 17954-17963.	1.7	33
56	On the use of Fe(dpm) ₃ as precursor for the thermal VD growth of <i>hematite</i> nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600779.	0.8	8
57	Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structures. ChemPhysChem, 2017, 18, 64-71.	1.0	4
58	Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction. Solar Energy Materials and Solar Cells, 2017, 159, 456-466.	3.0	30
59	XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route. Surface Science Spectra, 2016, 23, 61-69.	0.3	10
60	Fe2O3-WO3 nanosystems synthesized by a hybrid CVD/sputtering route, and analyzed by X-ray photoelectron spectroscopy. Surface Science Spectra, 2016, 23, 93-101.	0.3	4
61	Fe2O3-TiO2 nanocomposites on activated carbon fibers by a plasma-assisted approach. Surface and Coatings Technology, 2016, 307, 352-358.	2.2	10
62	Hydrogen peroxide activation by fluorophilic polyoxotungstates for fast and selective oxygen transfer catalysis. Dalton Transactions, 2016, 45, 14544-14548.	1.6	11
63	Advances in photocatalytic NO _x abatement through the use of Fe ₂ O ₃ /TiO ₂ nanocomposites. RSC Advances, 2016, 6, 74878-74885.	1.7	39
64	Novel two-step vapor-phase synthesis of UV–Vis light active Fe2O3/WO3 nanocomposites for phenol degradation. Environmental Science and Pollution Research, 2016, 23, 20350-20359.	2.7	12
65	Plasmaâ€Assisted Fabrication of Fe ₂ O ₃ Co ₃ O ₄ Nanomaterials as Anodes for Photoelectrochemical Water Splitting. Plasma Processes and Polymers, 2016, 13, 191-200.	1.6	39
66	Iron–Titanium Oxide Nanocomposites Functionalized with Gold Particles: From Design to Solar Hydrogen Production. Advanced Materials Interfaces, 2016, 3, 1600348.	1.9	18
67	Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications. Applied Surface Science, 2016, 362, 42-48.	3.1	4
68	Interfacial insight in multi-junction metal oxide photoanodes for water-splitting applications. Nano Energy, 2016, 19, 415-427.	8.2	45
69	TiO2-Fe2O3 and Co3O4-Fe2O3 nanocomposites analyzed by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2015, 22, 34-46.	0.3	7
70	Fe ₂ O ₃ â€"TiO ₂ Nanoâ€heterostructure Photoanodes for Highly Efficient Solar Water Oxidation. Advanced Materials Interfaces, 2015, 2, 1500313.	1.9	103
71	PECVD of <i>Hematite</i> Nanoblades and Nanocolumns: Synthesis, Characterization, and Growth Model. Chemical Vapor Deposition, 2015, 21, 294-299.	1.4	12
72	Interplay of thickness and photoelectrochemical properties in nanostructured \hat{l}_{\pm} -Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1501-1507.	0.8	21

#	Article	IF	CITATIONS
73	Highâ€Performance Olivine for Lithium Batteries: Effects of Ni/Co Doping on the Properties of LiFe <i>_{\hat{l}±}</i> Ni <i>_{\hat{l}²}</i> Co <i>_{\hat{l}³}</i> PO ₄ Cathodes. Advanced Functional Materials, 2015, 25, 4032-4037.	7.8	29
74	An old workhorse for new applications: Fe(dpm) ₃ as a precursor for low-temperature PECVD of iron(<scp>iii</scp>) oxide. Physical Chemistry Chemical Physics, 2015, 17, 11174-11181.	1.3	20
75	Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Langmuir, 2015, 31, 2584-2592.	1.6	22
76	Determination of thermooptical and transport parameters of $\hat{l}\mu$ iron(III) oxide-based nanocomposites by beam deflection spectroscopy. Optical Materials, 2015, 42, 370-375.	1.7	9
77	Mild fabrication of silica-silver nanocomposites as active platforms for environmental remediation. RSC Advances, 2015, 5, 9600-9606.	1.7	14
78	Fe ₂ O ₃ â€"TiO ₂ nanosystems by a hybrid PE-CVD/ALD approach: controllable synthesis, growth mechanism, and photocatalytic properties. CrystEngComm, 2015, 17, 6219-6226.	1.3	37
79	Electrospun Black Titania Nanofibers: Influence of Hydrogen Plasma-Induced Disorder on the Electronic Structure and Photoelectrochemical Performance. Journal of Physical Chemistry C, 2015, 119, 18835-18842.	1.5	68
80	Fluoroalkylsilanes with Embedded Functional Groups as Building Blocks for Environmentally Safer Self-Assembled Monolayers. Langmuir, 2015, 31, 6988-6994.	1.6	13
81	A study of Pt∫i±-Fe2O3 Nanocomposites by XPS. Surface Science Spectra, 2015, 22, 47-57.	0.3	10
82	Pt-functionalized Fe ₂ O ₃ photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state. Physical Chemistry Chemical Physics, 2015, 17, 12899-12907.	1.3	45
83	Vapor Phase Processing of α-Fe ₂ O ₃ Photoelectrodes for Water Splitting: An Insight into the Structure/Property Interplay. ACS Applied Materials & Structure/Property Interplay. ACS Applied Materials & Structure/Property Interplay. ACS Applied Materials & Structure/Property Interplay.	4.0	76
84	Viral Nanotemplates Armed with Oxygenic Polyoxometalates for Hydrogen Peroxide Detoxification. European Journal of Inorganic Chemistry, 2015, 2015, 3457-3461.	1.0	4
85	MOCVD of TiO ₂ thin films from a modified titanium alkoxide precursor. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1563-1570.	0.8	7
86	Nitrate and Nitrite Electrocatalytic Reduction at Layer-by-Layer Films Composed of Dawson-type Heteropolyanions Mono-substituted with Transitional Metal lons and Silver Nanoparticles. Electrochimica Acta, 2015, 184, 323-330.	2.6	18
87	Fabrication and Characterization of Fe ₂ O ₃ -Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers. Journal of Advanced Microscopy Research, 2015, 10, 239-243.	0.3	O
88	Fe2O3-CuO Nanocomposites Prepared by a Two-step Vapor Phase Strategy and Analyzed by XPS. Surface Science Spectra, 2014, 21, 1-9.	0.3	6
89	Surface Decoration of <i>iµ</i> â€Fe ₂ O ₃ Nanorods by CuO Via a Twoâ€Step CVD/Sputtering Approach ** . Chemical Vapor Deposition, 2014, 20, 313-319.	1.4	11
90	Self-Cleaning and Anti-Fogging Surfaces Based on Nanostructured Metal Oxides. Advances in Science and Technology, 2014, 91, 39-47.	0.2	3

#	Article	IF	Citations
91	Tailoring iron(<scp>III</scp>) oxide nanomorphology by chemical vapor deposition: Growth and characterization. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 316-322.	0.8	12
92	Enhanced Hydrogen Production by Photoreforming of Renewable Oxygenates Through Nanostructured Fe ₂ O ₃ Polymorphs. Advanced Functional Materials, 2014, 24, 372-378.	7.8	146
93	Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals. RSC Advances, 2014, 4, 52140-52146.	1.7	7
94	A plasma-assisted approach for the controlled dispersion of CuO aggregates into \hat{l}^2 iron($<$ scp $>$ iii $<$ /scp $>$) oxide matrices. CrystEngComm, 2014, 16, 8710-8716.	1.3	29
95	Fe 2 O 3 nanostructures on SrTiO 3 (1 1 1) by chemical vapor deposition: Growth and characterization. Materials Letters, 2014, 136, 141-145.	1.3	5
96	Solar H2generation via ethanol photoreforming on $\hat{l}\mu\text{-Fe2O3}$ nanorod arrays activated by Ag and Au nanoparticles. RSC Advances, 2014, 4, 32174.	1.7	40
97	Au/Îμ-Fe ₂ O ₃ Nanocomposites as Selective NO ₂ Gas Sensors. Journal of Physical Chemistry C, 2014, 118, 11813-11819.	1.5	81
98	Nanostructured iron(III) oxides: From design to gas- and liquid-phase photo-catalytic applications. Thin Solid Films, 2014, 564, 121-127.	0.8	28
99	Surface Functionalization of Nanostructured Fe ₂ O ₃ Polymorphs: From Design to Light-Activated Applications. ACS Applied Materials & Design to Light-Activated Applications. ACS Applied Materials & Design to Light-Activated Applications.	4.0	44
100	Knitting the Catalytic Pattern of Artificial Photosynthesis to a Hybrid Graphene Nanotexture. ACS Nano, 2013, 7, 811-817.	7.3	93
101	Photoassisted H2 production by metal oxide nanomaterials fabricated through CVD-based approaches. Surface and Coatings Technology, 2013, 230, 219-227.	2.2	21
102	Supported $\hat{l}\mu$ and \hat{l}^2 iron oxide nanomaterials by chemical vapor deposition: structure, morphology and magnetic properties. CrystEngComm, 2013, 15, 1039-1042.	1.3	39
103	Columnar Fe2O3 arrays via plasma-enhanced growth: Interplay of fluorine substitution and photoelectrochemical properties. International Journal of Hydrogen Energy, 2013, 38, 14189-14199.	3.8	63
104	Fluorine doped Fe2O3 nanostructures by a one-pot plasma-assisted strategy. RSC Advances, 2013, 3, 23762.	1.7	26
105	Intrinsic Nitrogenâ€doped CVDâ€grown TiO ₂ Thin Films from Allâ€Nâ€coordinated Ti Precursors for Photoelectrochemical Applications. Chemical Vapor Deposition, 2013, 19, 45-52.	1.4	32
106	Fluorine-Doped Iron Oxide Nanomaterials by Plasma Enhanced-CVD: An XPS Study. Surface Science Spectra, 2013, 20, 9-16.	0.3	10
107	Insights on Growth and Nanoscopic Investigation of Uncommon Iron Oxide Polymorphs. European Journal of Inorganic Chemistry, 2013, 2013, 5454-5461.	1.0	25
108	Supported F-Doped <l>α</l> -Fe ₂ O ₃ Nanomaterials: Synthesis, Characterization and Photo-Assisted H ₂ Production. Journal of Nanoscience and Nanotechnology, 2013, 13, 4962-4968.	0.9	42

#	Article	IF	Citations
109	Ag and Pt Particles Sputtered on Î ² -Fe2O3: An XPS Investigation. Surface Science Spectra, 2012, 19, 1-12.	0.3	16
110	Controlled synthesis and properties of \hat{l}^2 -Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. CrystEngComm, 2012, 14, 6469.	1.3	51
111	Epitaxial-like Growth of Co ₃ O ₄ /ZnO Quasi-1D Nanocomposites. Crystal Growth and Design, 2012, 12, 5118-5124.	1.4	22
112	Vaporâ€Phase Fabrication of βâ€Iron Oxide Nanopyramids for Lithiumâ€Ion Battery Anodes. ChemPhysChem, 2012, 13, 3798-3801.	1.0	21
113	Î ² -Fe ₂ O ₃ nanomaterials from an iron(<scp>ii</scp>) diketonate-diamine complex: a study from molecular precursor to growth process. Dalton Transactions, 2012, 41, 149-155.	1.6	63
114	Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. Journal of Materials Chemistry, 2012, 22, 1620-1626.	6.7	40
115	Synthesis and conformational characterization of functional di-block copolymer brushes for microarray technology. Applied Surface Science, 2012, 258, 3750-3756.	3.1	19
116	Hybrid Polyoxotungstates as Functional Comonomers in New Crossâ€Linked Catalytic Polymers for Sustainable Oxidation with Hydrogen Peroxide. Chemistry - A European Journal, 2012, 18, 13195-13202.	1.7	44
117	Straightforward Synthesis of Gold Nanoparticles Supported on Commercial Silica-Polyethyleneimine Beads. Journal of Physical Chemistry C, 2012, 116, 25434-25443.	1.5	32
118	Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases. Nanotechnology, 2012, 23, 025502.	1.3	48
119	Multi-component oxide nanosystems by Chemical Vapor Deposition and related routes: challenges and perspectives. CrystEngComm, 2012, 14, 6347.	1.3	41
120	On the Performances of Cu _{<i>x</i>} O-TiO ₂ (<i>x</i> >= 1, 2) Nanomaterials As Innovative Anodes for Thin Film Lithium Batteries. ACS Applied Materials & Diterfaces, 2012, 4, 3610-3619.	4.0	64
121	Co ₃ O ₄ /ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2012, 4, 928-934.	4.0	141
122	Vertically oriented CuO/ZnO nanorod arrays: from plasma-assisted synthesis to photocatalytic H2 production. Journal of Materials Chemistry, 2012, 22, 11739.	6.7	108
123	CuO/ZnO Nanocomposite Gas Sensors Developed by a Plasmaâ€Assisted Route. ChemPhysChem, 2012, 13, 2342-2348.	1.0	55
124	Manufacturing of inorganic nanomaterials: concepts and perspectives. Nanoscale, 2012, 4, 2813.	2.8	43
125	An iron(II) diamine diketonate molecular complex: Synthesis, characterization and application in the CVD of Fe2O3 thin films. Inorganica Chimica Acta, 2012, 380, 161-166.	1.2	40
126	Organicâ€Inorganic Molecular Nanoâ€Sensors: A Bisâ€Dansylated Tweezerâ€Like Fluoroionophore Integrating a Polyoxometalate Core. European Journal of Organic Chemistry, 2012, 2012, 281-289.	1.2	23

#	Article	IF	Citations
127	Zinc and Copper Oxides Functionalized with Metal Nanoparticles: An Insight Into Their Nano-Organization. Journal of Advanced Microscopy Research, 2012, 7, 84-90.	0.3	2
128	Strongly oriented Co3O4 thin films on MgO(100) and MgAl2O4(100) substrates by PE-CVD. CrystEngComm, 2011, 13, 3670.	1.3	26
129	Tailored Vapor-Phase Growth of Cu _{<i>x</i>} Oâ€"TiO ₂ (<i>x</i> = 1, 2) Nanomaterials Decorated with Au Particles. Langmuir, 2011, 27, 6409-6417.	1.6	42
130	F-Doped Co ₃ O ₄ Photocatalysts for Sustainable H ₂ Generation from Water/Ethanol. Journal of the American Chemical Society, 2011, 133, 19362-19365.	6.6	171
131	Novel Synthesis and Gas Sensing Performances of CuOâ€"TiO ₂ Nanocomposites Functionalized with Au Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 10510-10517.	1.5	133
132	Surface-Driven Porphyrin Self-Assembly on Pre-Activated Si Substrates. Journal of Nanoscience and Nanotechnology, 2011, 11, 3235-3244.	0.9	1
133	Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors. Sensors and Actuators B: Chemical, 2011, 160, 79-86.	4.0	56
134	Plasma-assisted synthesis of Ag/ZnO nanocomposites: First example of photo-induced H2 production and sensing. International Journal of Hydrogen Energy, 2011, 36, 15527-15537.	3.8	79
135	Proteins conjugation with ZnO sol–gel nanopowders. Journal of Sol-Gel Science and Technology, 2011, 60, 352-358.	1.1	11
136	Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis?. Advanced Functional Materials, 2011, 21, 2611-2623.	7.8	126
137	Hydrogen Photogeneration: Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis? (Adv. Funct. Mater. 14/2011). Advanced Functional Materials, 2011, 21, 2610-2610.	7.8	1
138	MOCVD of ZnO Films from $\langle i \rangle$ Bis $\langle i \rangle$ (Ketoiminato)Zn(II) Precursors: Structure, Morphology and Optical Properties. Chemical Vapor Deposition, 2011, 17, 155-161.	1.4	27
139	Plasma Processing of Nanomaterials: Emerging Technologies for Sensing and Energy Applications. Journal of Nanoscience and Nanotechnology, 2011, 11, 8206-8213.	0.9	27
140	RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications. Nanotechnology, 2011, 22, 275711.	1.3	21
141	Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 10054-10060.	1.5	61
142	ZnO Nanorod Arrays by Plasmaâ€Enhanced CVD for Lightâ€Activated Functional Applications. ChemPhysChem, 2010, 11, 2337-2340.	1.0	40
143	CVD Co ₃ O ₄ Nanopyramids: a Nanoâ€Platform for Photoâ€Assisted H ₂ Production. Chemical Vapor Deposition, 2010, 16, 296-300.	1.4	29
144	1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sensors and Actuators B: Chemical, 2010, 149, 1-7.	4.0	169

#	Article	IF	CITATIONS
145	Novel insight into the alignment and structural ordering of supported ZnO nanorods. Chemical Physics Letters, 2010, 500, 287-290.	1.2	25
146	Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2010, 2, 826-831.	6.6	459
147	Vapor Phase Synthesis, Characterization and Gas Sensing Performances of Co ₃ O ₄ and Au/Co ₃ O ₄ Nanosystems. Journal of Nanoscience and Nanotechnology. 2010. 10. 8054-8061.	0.9	35
148	Highly Oriented ZnO Nanorod Arrays by a Novel Plasma Chemical Vapor Deposition Process. Crystal Growth and Design, 2010, 10, 2011-2018.	1.4	89
149	Alkyl chain grafting on silica–zirconia mixed oxides: preparation and characterization. Journal of Materials Chemistry, 2010, 20, 2345.	6.7	5
150	Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. CrystEngComm, 2010, 12, 2185.	1.3	110
151	Urchin-like ZnO nanorod arrays for gas sensing applications. CrystEngComm, 2010, 12, 3419.	1.3	90
152	Chemical Vapor Deposition of Cu <inf>2</inf> O and CuO nanosystems for innovative gas sensors. , 2009, , .		3
153	Innovative M(Hfa)2•TMEDA (M=Cu, Co) Precursors for the CVD of Copper-Cobalt Oxides: an Integrated Theoretical and Experimental Approach. ECS Transactions, 2009, 25, 549-556.	0.3	10
154	Multi-Functional Copper Oxide Nanosystems for H2 Sustainable Production and Sensing. ECS Transactions, 2009, 25, 1169-1176.	0.3	13
155	Rational Design of Ag/TiO ₂ Nanosystems by a Combined RFâ€Sputtering/Solâ€Gel Approach. ChemPhysChem, 2009, 10, 3249-3259.	1.0	62
156	The Potential of Supported Cu ₂ O and CuO Nanosystems in Photocatalytic H ₂ Production. ChemSusChem, 2009, 2, 230-233.	3.6	225
157	Facile and Reproducible Synthesis of Nanostructured Colloidal ZnO Nanoparticles from Zinc Acetylacetonate: Effect of Experimental Parameters and Mechanistic Investigations. European Journal of Inorganic Chemistry, 2009, 2009, 5017-5028.	1.0	40
158	Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors and Actuators B: Chemical, 2009, 141, 270-275.	4.0	114
159	Photoinduced superhydrophilicity and photocatalytic properties of ZnO nanoplatelets. Surface and Coatings Technology, 2009, 203, 2041-2045.	2.2	50
160	Luminescent Properties of Eu-Doped Lanthanum Oxyfluoride Solâ^Gel Thin Films. Journal of Physical Chemistry C, 2009, 113, 14429-14434.	1.5	44
161	CVD of Copper Oxides from a \hat{I}^2 -Diketonate Diamine Precursor: Tailoring the Nano-Organization. Crystal Growth and Design, 2009, 9, 2470-2480.	1.4	70
162	A Cobalt(II) Hexafluoroacetylacetonate Ethylenediamine Complex As a CVD Molecular Source of Cobalt Oxide Nanostructures. Inorganic Chemistry, 2009, 48, 82-89.	1.9	45

#	Article	IF	Citations
163	Chiral Strandbergâ€Type Molybdates [(RPO ₃) ₁₅] ^{2â^'} as Molecular Gelators: Selfâ€Assembled Fibrillar Nanostructures with Enhanced Optical Activity. Angewandte Chemie - International Edition, 2008, 47, 7275-7279.	7.2	113
164	A soft Plasma Enhanced-Chemical Vapor Deposition process for the tailored synthesis of SiO2 films. Thin Solid Films, 2008, 516, 7393-7399.	0.8	13
165	Silica-sandwiched Au nanoparticle arrays by a soft PE-CVD/RF sputtering approach. Nanotechnology, 2008, 19, 255602.	1.3	12
166	Gas Sensing Properties of Columnar CeO2 Nanostructures Prepared by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2008, 8, 1012-1016.	0.9	26
167	TiO2 Thin Films by Chemical Vapor Deposition: An XPS Characterization. Surface Science Spectra, 2007, 14, 27-33.	0.3	34
168	ZnO Nanoplatelets Obtained by Chemical Vapor Deposition, Studied by XPS. Surface Science Spectra, 2007, 14, 19-26.	0.3	40
169	Pt and Ni Carbon Nitride Electrocatalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2007, 154, B745.	1.3	31
170	Columnar CeO2nanostructures for sensor application. Nanotechnology, 2007, 18, 125502.	1.3	92
171	Effect of microwave assisted and conventional thermal heating on the evolution of nanostructured inorganic–organic hybrid materials to binary ZrO2–SiO2 oxides. Journal of Materials Chemistry, 2007, 17, 4387.	6.7	15
172	Photocatalytic and antibacterial activity of TiO $<$ sub $>$ 2 $<$ /sub $>$ and Au/TiO $<$ sub $>$ 2 $<$ /sub $>$ nanosystems. Nanotechnology, 2007, 18, 375709.	1.3	197
173	First Example of ZnOâ^'TiO ₂ Nanocomposites by Chemical Vapor Deposition:  Structure, Morphology, Composition, and Gas Sensing Performances. Chemistry of Materials, 2007, 19, 5642-5649.	3.2	164
174	A Pt–Fe Carbon Nitride Nanoâ€electrocatalyst for Polymer Electrolyte Membrane Fuel Cells and Directâ€Methanol Fuel Cells: Synthesis, Characterization, and Electrochemical Studies. Advanced Functional Materials, 2007, 17, 3626-3638.	7.8	73
175	Low-Temperature PECVD of Transparent SiOxCyHz Thin Films. Chemical Vapor Deposition, 2007, 13, 205-210.	1.4	8
176	Temperatureâ€Controlled Synthesis and Photocatalytic Performance of ZnO Nanoplatelets. Chemical Vapor Deposition, 2007, 13, 618-625.	1.4	48
177	LaCoO3: Effect of synthesis conditions on properties and reactivity. Applied Catalysis B: Environmental, 2007, 72, 351-362.	10.8	140
178	Toward the Innovative Synthesis of Columnar CeO2Nanostructures. Langmuir, 2006, 22, 8639-8641.	1.6	33
179	Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride. Electrochemistry Communications, 2006, 8, 1707-1712.	2.3	105
180	Cerium (III) Fluoride Thin Films by XPS. Surface Science Spectra, 2006, 13, 87-93.	0.3	12

#	Article	IF	CITATIONS
181	Silica-Based Thin Films by PE-CVD: An XPS Characterization. Surface Science Spectra, 2006, 13, 81-86.	0.3	0
182	Gold(III) dithiocarbamate derivatives of N-methylglycine: An experimental and theoretical investigation. Polyhedron, 2005, 24, 521-531.	1.0	54
183	SO2 on TiO2(110) and Ti2O3(101̄2) Nonpolar Surfaces:  A DFT Study. Journal of Physical Chemistry B, 2005 109, 12596-12602.	.1.2	28
184	A Comparative Theoretical Investigation of Three Sodalite Systems:Â Cd4S(AlO2)6, Zn4O(BO2)6, and Zn4S(BO2)6. Journal of Physical Chemistry B, 2002, 106, 2569-2573.	1.2	8
185	A Comparative Study of CO Chemisorption on Al2O3and Ti2O3Nonpolar Surfaces. Journal of Physical Chemistry B, 2002, 106, 795-802.	1.2	31
186	Erratum to "An experiment and theoretical study of the electronic and molecular structure of [Zn4(μ4-S){μ-S2P(OC2H5)2}6]: the first molecular model of ZnS― Journal of Organometallic Chemistry, 2000, 601, 343.	0.8	0
187	An experimental and theoretical study of the electronic and molecular structure of [Zn4(?4-S) $\{\hat{l}^1/4$ -S2P(OC2H5)2 $\}$ 6]: the first molecular model of ZnS. Journal of Organometallic Chemistry, 2000, 593-594, 307-314.	0.8	8
188	Theoretical Study of the Chemisorption of CO on Al2O3 (0001). Inorganic Chemistry, 2000, 39, 5232-5237.	1.9	24
189	Organometallic Chemistry of Ph3PCCO. Synthesis, Characterization, X-ray Structure Determination, and Density Functional Study of the First Stable Bis- \hat{l} -1-ketenyl Complex,trans-[PtCl2 $\{\hat{l}$ -1-C(PPh3)CO}2]. Organometallics, 2000, 19, 1373-1383.	1.1	27
190	A theoretical study of the H2O and H2S chemisorption on Cu2O(111). Applied Surface Science, 1999, 142, 164-168.	3.1	44
191	A theoretical investigation of the relaxation effects induced on the $ZnO(101\hat{l}_{n}0)$ surface by the chemisorption of H2 and CO. Applied Surface Science, 1999, 142, 192-195.	3.1	15
192	Density functional studies of molecular chemisorption on TiO2 (110). Applied Surface Science, 1999, 142, 196-199.	3.1	34
193	A comparative study of the NH3 chemisorption on $ZnO(101\hat{l},0)$ and $Cu2O(111)$ non-polar surfaces. Chemical Physics Letters, 1999, 300, 403-408.	1.2	23
194	Electronic structure of Nb impurities in and on TiO2. Physical Chemistry Chemical Physics, 1999, 1, 3793-3799.	1.3	20
195	Experimental and Theoretical Investigation of the Molecular and Electronic Structure of [Zn4(μ4-S){μ-S2As(CH3)2}6] and [Cd4(μ4-S){μ-S2As(CH3)2}6]: Two Possible Molecular Models of Extend Metal Chalcogenide Semiconductorsâ€. Inorganic Chemistry, 1999, 38, 1145-1152.	lado	16
196	LCAO-LDA Study of the chemisorption of formate on $Cu(110)$ and $Ag(110)$ surfaces. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 797-804.	1.7	8
197	Theoretical Investigation of the Chemisorption of H2and CO on the ZnO(101Ì,,0) Surface. Inorganic Chemistry, 1998, 37, 5482-5490.	1.9	26
198	Molecular Chemisorption on TiO2(110):Â A Local Point of View. Journal of Physical Chemistry B, 1998, 102, 10745-10752.	1.2	91

#	Article	IF	CITATIONS
199	Ab Initioand Experimental Studies on the Structure and Relative Stability of the cis-Hydride $\hat{a}^{\hat{i}}$ -2-Dihydrogen Complexes [{P(CH2CH2PPh2)3}M(H)(\hat{i} -2-H2)]+(M = Fe, Ru). Inorganic Chemistry, 1997, 36, 1061-1069.	1.9	57
200	An Experimental and Theoretical Study of the Electronic Structure of Zinc Thiophenolate-Capped Clusters. Inorganic Chemistry, 1997, 36, 4707-4716.	1.9	37
201	An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(1011,0). Surface Science, 1997, 377-379, 587-591.	0.8	50
202	A comparative study of CO and NO chemisorption on Cu2O(111) and Ag2O(111) non-polar surfaces. Chemical Physics Letters, 1997, 280, 53-58.	1.2	32
203	Reaction of Ketenylidenetriphenylphosphorane (Ph3PCCO) with Platinum(II) and Palladium(II) Complexes. Synthesis, Characterization, and Molecular Structure of $[Pt(\hat{l}-3-C3H5)\{\hat{l}-1-C(PPh3)(CO)\}(PPh3)]BF4$. Organometallics, 1996, 15, 3250-3252.	1.1	27
204	A LCAO-LDF study of Brâ^nsted acids chemisorption on ZnO(0001). Surface Science, 1996, 352-354, 341-345.	0.8	9
205	An experimental and theoretical study of the interaction of CH3OH and CH3SH with ZnO. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3247.	1.7	23
206	A theoretical investigation of BrÃ, nsted acids chemisorption on ZnO(0001). Surface Science, 1995, 343, 115-132.	0.8	16