Frank Claessens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547599/publications.pdf

Version: 2024-02-01

225 papers 27,526 citations

63 h-index 157 g-index

236 all docs

236 docs citations

times ranked

236

40426 citing authors

#	Article	IF	CITATIONS
1	Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128 \hat{A} -9 million children, adolescents, and adults. Lancet, The, 2017, 390, 2627-2642.	6.3	5,010
2	Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet, The, 2016, 387, 1377-1396.	6.3	3,941
3	Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with $4\hat{A}\cdot 4$ million participants. Lancet, The, 2016, 387, 1513-1530.	6.3	2,842
4	Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with $19 \hat{A} \cdot 1$ million participants. Lancet, The, 2017, 389, 37-55.	6.3	1,667
5	Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, The, 2021, 398, 957-980.	6.3	1,289
6	A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1327-1332.	3.3	703
7	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
8	Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 2017, 97, 135-187.	13.1	541
9	The AF1 and AF2 Domains of the Androgen Receptor Interact with Distinct Regions of SRC1. Molecular and Cellular Biology, 1999, 19, 8383-8392.	1.1	371
10	Structural basis of androgen receptor binding to selective androgen response elements. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4758-4763.	3.3	328
11	Fracture Risk and Zoledronic Acid Therapy in Men with Osteoporosis. New England Journal of Medicine, 2012, 367, 1714-1723.	13.9	285
12	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
13	The Androgen Receptor Amino-Terminal Domain Plays a Key Role in p $160\mathrm{Coactivator}$ -Stimulated Gene Transcription. Molecular and Cellular Biology, 1999, 19, 6085-6097.	1.1	245
14	Sex Steroid Actions in Male Bone. Endocrine Reviews, 2014, 35, 906-960.	8.9	239
15	Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporosis International, 2013, 24, 87-98.	1.3	236
16	Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants. Lancet, The, 2020, 396, 1511-1524.	6.3	219
17	Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. Journal of Steroid Biochemistry and Molecular Biology, 2001, 76, 23-30.	1.2	191
18	Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nuclear Receptor Signaling, 2008, 6, nrs.06008.	1.0	189

#	Article	IF	Citations
19	Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cellular and Molecular Life Sciences, 2012, 69, 1651-1667.	2.4	142
20	Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331â€^288 participants. Lancet Diabetes and Endocrinology,the, 2015, 3, 624-637.	5 . 5	139
21	Selective DNA recognition by the androgen receptor as a mechanism for hormone-specific regulation of gene expression. Molecular Genetics and Metabolism, 2003, 78, 175-185.	0.5	131
22	Structure of the homodimeric androgen receptor ligand-binding domain. Nature Communications, 2017, 8, 14388.	5.8	131
23	Low Free Testosterone Is Associated with Hypogonadal Signs and Symptoms in Men with Normal Total Testosterone. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2647-2657.	1.8	129
24	The Hinge Region Regulates DNA Binding, Nuclear Translocation, and Transactivation of the Androgen Receptor. Cancer Research, 2007, 67, 4514-4523.	0.4	128
25	The Androgen-specific Probasin Response Element 2 Interacts Differentially with Androgen and Glucocorticoid Receptors. Journal of Biological Chemistry, 1996, 271, 19013-19016.	1.6	126
26	Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochemical Journal, 1999, 341, 515-521.	1.7	125
27	Looking at nuclear receptors from a new angle. Molecular and Cellular Endocrinology, 2014, 382, 97-106.	1.6	125
28	Functional characterization of an androgen response element in the first intron of the C3(1) gene of prostatic binding protein. Biochemical and Biophysical Research Communications, 1989, 164, 833-840.	1.0	124
29	The Rules of DNA Recognition by the Androgen Receptor. Molecular Endocrinology, 2010, 24, 898-913.	3.7	123
30	Androgen receptor antagonists for prostate cancer therapy. Endocrine-Related Cancer, 2014, 21, T105-T118.	1.6	116
31	Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis. Scientific Reports, 2016, 6, 35539.	1.6	116
32	Structural basis for nuclear hormone receptor DNA binding. Molecular and Cellular Endocrinology, 2012, 348, 411-417.	1.6	115
33	Muscle-bone interactions: From experimental models to the clinic? A critical update. Molecular and Cellular Endocrinology, 2016, 432, 14-36.	1.6	115
34	Androgen Regulation of the TMPRSS2 Gene and the Effect of a SNP in an Androgen Response Element. Molecular Endocrinology, 2013, 27, 2028-2040.	3.7	113
35	Emerging mechanisms of enzalutamide resistance in prostate cancer. Nature Reviews Urology, 2014, 11, 712-716.	1.9	107
36	Differences in DNA Binding Characteristics of the Androgen and Glucocorticoid Receptors Can Determine Hormone-specific Responses. Journal of Biological Chemistry, 2000, 275, 12290-12297.	1.6	106

#	Article	IF	CITATIONS
37	Interaction of the Putative Androgen Receptor-Specific Coactivator ARA70/ELE1Î \pm with Multiple Steroid Receptors and Identification of an Internally Deleted ELE1Î 2 Isoform. Molecular Endocrinology, 1999, 13, 117-128.	3.7	101
38	A satellite cellâ€specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB Journal, 2014, 28, 2979-2994.	0.2	100
39	Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4961-4966.	3. 3	97
40	Associations Between Sex Steroids and the Development of Metabolic Syndrome: A Longitudinal Study in European Men. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1396-1404.	1.8	97
41	Change of Specificity Mutations in Androgen-selective Enhancers. Journal of Biological Chemistry, 2000, 275, 12298-12305.	1.6	96
42	Interplay between Two Hormone-Independent Activation Domains in the Androgen Receptor. Cancer Research, 2006, 66, 543-553.	0.4	94
43	Squalene Synthase, a Determinant of Raft-associated Cholesterol and Modulator of Cancer Cell Proliferation. Journal of Biological Chemistry, 2007, 282, 18777-18785.	1.6	93
44	Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: Evidence from targeted AR disruption in mouse osteocytes. Journal of Bone and Mineral Research, 2012, 27, 2535-2543.	3.1	93
45	Inhibition of Cathepsin K for Treatment of Osteoporosis. Current Osteoporosis Reports, 2012, 10, 73-79.	1.5	92
46	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
47	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5 . 8	88
48	The hinge region in androgen receptor control. Molecular and Cellular Endocrinology, 2012, 358, 1-8.	1.6	82
49	Androgen receptor knockout and knock-in mouse models. Journal of Molecular Endocrinology, 2009, 42, 11-17.	1.1	78
50	Musculoskeletal Frailty: A Geriatric Syndrome at the Core of Fracture Occurrence in Older Age. Calcified Tissue International, 2012, 91, 161-177.	1.5	78
51	Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice. Endocrinology, 2016, 157, 648-665.	1.4	78
52	DNA recognition by nuclear receptors. Essays in Biochemistry, 2004, 40, 59-72.	2.1	76
53	Androgen Specificity of a Response Unit Upstream of the Human Secretory Component Gene Is Mediated by Differential Receptor Binding to an Essential Androgen Response Element. Molecular Endocrinology, 1999, 13, 1558-1570.	3.7	75
54	Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochemical Journal, 2002, 361, 97-103.	1.7	73

#	Article	IF	Citations
55	Detailed functional studies on androgen receptor mild mutations demonstrate their association with male infertility. Clinical Endocrinology, 2008, 68, 580-588.	1.2	73
56	The Effect of F877L and T878A Mutations on Androgen Receptor Response to Enzalutamide. Molecular Cancer Therapeutics, 2016, 15, 1702-1712.	1.9	73
57	Characterization of the Two Coactivator-interacting Surfaces of the Androgen Receptor and Their Relative Role in Transcriptional Control*. Journal of Biological Chemistry, 2002, 277, 49230-49237.	1.6	71
58	Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate Endocrine-Related Cancer, 2004, 11, 117-130.	1.6	71
59	Superagonistic Action of 14-epi-Analogs of 1,25-Dihydroxyvitamin D Explained by Vitamin D Receptor-Coactivator Interaction. Molecular Pharmacology, 2005, 67, 1566-1573.	1.0	71
60	Targeting the BAF57 SWI/SNF Subunit in Prostate Cancer: A Novel Platform to Control Androgen Receptor Activity. Cancer Research, 2008, 68, 4551-4558.	0.4	71
61	Implications of a polyglutamine tract in the function of the human androgen receptor. Biochemical and Biophysical Research Communications, 2003, 306, 46-52.	1.0	68
62	Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. Journal of Cachexia, Sarcopenia and Muscle, 2015, 6, 242-252.	2.9	68
63	Differential Effect of Small Ubiquitin-Like Modifier (SUMO)-ylation of the Androgen Receptor in the Control of Cooperativity on SelectiveVersusCanonical Response Elements. Molecular Endocrinology, 2004, 18, 1438-1449.	3.7	66
64	Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: a pooled analysis of 1018 population-based measurement studies with 88.6 million participants. International Journal of Epidemiology, 2018, 47, 872-883i.	0.9	65
65	Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3472-3476.	1.0	65
66	Interaction of the Putative Androgen Receptor-Specific Coactivator ARA70/ELE1Â with Multiple Steroid Receptors and Identification of an Internally Deleted ELE1Â Isoform. Molecular Endocrinology, 1999, 13, 117-128.	3.7	65
67	DNA recognition by the androgen receptor: evidence for an alternative DNA-dependent dimerization, and an active role of sequences flanking the response element on transactivation. Biochemical Journal, 2003, 369, 141-151.	1.7	61
68	Active Vitamin D (1,25-Dihydroxyvitamin D) and Bone Health in Middle-Aged and Elderly Men: The European Male Aging Study (EMAS). Journal of Clinical Endocrinology and Metabolism, 2013, 98, 995-1005.	1.8	61
69	Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochemical Journal, 2002, 361, 97.	1.7	60
70	Identification of an Androgen Response Element in Intron 8 of the Sterol Regulatory Element-binding Protein Cleavage-activating Protein Gene Allowing Direct Regulation by the Androgen Receptor. Journal of Biological Chemistry, 2004, 279, 30880-30887.	1.6	58
71	Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nature Communications, 2021, 12, 5307.	5.8	58
72	Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell. Oncogene, 2008, 27, 2858-2867.	2.6	57

#	Article	IF	CITATIONS
73	Dual Function of an Amino-terminal Amphipatic Helix in Androgen Receptor-mediated Transactivation through Specific and Nonspecific Response Elements. Journal of Biological Chemistry, 2003, 278, 8212-8218.	1.6	55
74	Once-Yearly Zoledronic Acid in Older Men Compared with Women with Recent Hip Fracture. Journal of the American Geriatrics Society, 2011, 59, 2084-2090.	1.3	55
75	Sensitive routine liquid chromatography–tandem mass spectrometry method for serum estradiol and estrone without derivatization. Analytical and Bioanalytical Chemistry, 2013, 405, 8569-8577.	1.9	54
76	Interaction of androgen response elements with the DNA-binding domain of the rat androgen receptor expressed in Escherichia coli. Journal of Biological Chemistry, 1991, 266, 3439-3443.	1.6	54
77	Evidence for DNA-Binding Domain–Ligand-Binding Domain Communications in the Androgen Receptor. Molecular and Cellular Biology, 2012, 32, 3033-3043.	1.1	52
78	Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation <i>in vivo</i> . Nucleic Acids Research, 2014, 42, 4230-4240.	6.5	52
79	Comparing the rules of engagement of androgen and glucocorticoid receptors. Cellular and Molecular Life Sciences, 2017, 74, 2217-2228.	2.4	51
80	Proteins interacting with an androgen-responsive unit in the C3(1) gene intron. Molecular and Cellular Endocrinology, 1993, 94, 165-172.	1.6	48
81	Testosterone and the Male Skeleton: A Dual Mode of Action. Journal of Osteoporosis, 2011, 2011, 1-7.	0.1	48
82	Molecular cloning and characterization of multiple isoforms of the snowdrop (Galanthus nivalis L.) lectin. Planta, 1991, 186, 35-43.	1.6	47
83	Expression of Tubb3, a Beta-Tubulin Isotype, Is Regulated by Androgens in Mouse and Rat Sertoli Cells1. Biology of Reproduction, 2011, 85, 934-945.	1.2	47
84	Sequence-specific binding of androgen-receptor complexes to prostatic binding protein genes. Molecular and Cellular Endocrinology, 1990, 74, 203-212.	1.6	46
85	Agonist–antagonist induced coactivator and corepressor interplay on the human androgen receptor. Molecular and Cellular Endocrinology, 2003, 213, 79-85.	1.6	46
86	Osteoporosis in older men: Recent advances inÂpathophysiology and treatment. Best Practice and Research in Clinical Endocrinology and Metabolism, 2013, 27, 527-539.	2.2	46
87	The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. Journal of Cellular and Molecular Medicine, 2009, 13, 2210-2223.	1.6	45
88	Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. Scientific Reports, 2019, 9, 13786.	1.6	44
89	National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: a pooled analysis of 458 population-based studies in Asian and Western countries. International Journal of Epidemiology, 2020, 49, 173-192.	0.9	44
90	A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cellular and Molecular Life Sciences, 2010, 67, 1919-1927.	2.4	43

#	Article	IF	CITATIONS
91	Dynamic Switching of Active Promoter and Enhancer Domains Regulates <i>Tet1</i> and <i>Tet2</i> Expression during Cell State Transitions between Pluripotency and Differentiation. Molecular and Cellular Biology, 2015, 35, 1026-1042.	1.1	43
92	Testosterone boosts physical activity in male mice via dopaminergic pathways. Scientific Reports, 2018, 8, 957.	1.6	43
93	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	5.8	43
94	Identification of a Multihormone Responsive Enhancer Far Upstream from the Human Tissue-type Plasminogen Activator Gene. Journal of Biological Chemistry, 1997, 272, 663-671.	1.6	41
95	Gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1): Chronic mucocutaneous candidiasis accompanied by enamel defects and delayed dental shedding. Journal of Allergy and Clinical Immunology, 2014, 134, 1209-1213.e6.	1.5	41
96	Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight. ELife, $2021,10,10$	2.8	41
97	The first exon of the human sc gene contains an androgen responsive unit and an interferon regulatory factor element. Molecular and Cellular Endocrinology, 1999, 153, 91-102.	1.6	40
98	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	5.8	40
99	Interaction of androgen response elements with the DNA-binding domain of the rat androgen receptor expressed in Escherichia coli. Journal of Biological Chemistry, 1991, 266, 3439-43.	1.6	40
100	The androgen receptor DNA-binding domain determines androgen selectivity of transcriptional response. Biochemical Society Transactions, 2006, 34, 1089-1094.	1.6	39
101	Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology, 2015, 156, 4522-4533.	1.4	39
102	A kindred with mutant IKAROS and autoimmunity. Journal of Allergy and Clinical Immunology, 2018, 142, 699-702.e12.	1.5	39
103	Androgen-receptor-specific DNA binding to an element in the first exon of the human secretory component gene. Biochemical Journal, 2001, 353, 611-620.	1.7	38
104	Novel insights in the regulation and mechanism of androgen action on bone. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 240-244.	1.2	38
105	Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nature Reviews Urology, 2021, 18, 739-762.	1.9	38
106	Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochemical Journal, 1999, 341 (Pt 3), 515-21.	1.7	38
107	A Human Gene Encoding Diazepam-Binding Inhibitor/Acyl-CoA-Binding Protein: Transcription and Hormonal Regulation in the Androgen-Sensitive Human Prostatic Adenocarcinoma Cell Line LNCaP. DNA and Cell Biology, 1996, 15, 197-208.	0.9	37
108	Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochemical Journal, 1999, 341, 515.	1.7	37

#	Article	IF	Citations
109	The Role of Single Nucleotide Polymorphisms in Predicting Prostate Cancer Risk and Therapeutic Decision Making. BioMed Research International, 2014, 2014, 1-16.	0.9	35
110	Comparative Genomic and Transcriptomic Analyses of LNCaP and C4-2B Prostate Cancer Cell Lines. PLoS ONE, 2014, 9, e90002.	1.1	35
111	Characterization of an androgen response element within the promoter of the epididymis-specific murine glutathione peroxidase 5 gene. Molecular and Cellular Endocrinology, 1997, 129, 33-46.	1.6	34
112	The androgen receptor has no direct antiresorptive actions in mouse osteoclasts. Molecular and Cellular Endocrinology, 2015, 411, 198-206.	1.6	34
113	Androgens Inhibit the Osteogenic Response to Mechanical Loading in Adult Male Mice. Endocrinology, 2015, 156, 1343-1353.	1.4	34
114	Intronic Androgen Response Elements of Prostatic Binding Protein Genes. Biochemical and Biophysical Research Communications, 1993, 191, 688-694.	1.0	33
115	Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes. Biochemical Journal, 2008, 411, 679-686.	1.7	33
116	NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth. Investigational New Drugs, 2010, 28, 729-743.	1.2	33
117	Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget, 2016, 7, 24326-24338.	0.8	33
118	Ubiquitous transcription factors NF1 and Sp1 are involved in the androgen activation of the mouse vas deferens protein promoter. Molecular and Cellular Endocrinology, 1997, 132, 13-23.	1.6	32
119	Sex steroids and the kidney: role in renal calcium and phosphate handling. Molecular and Cellular Endocrinology, 2018, 465, 61-72.	1.6	32
120	The STAT3 Inhibitor Galiellalactone Reduces IL6-Mediated AR Activity in Benign and Malignant Prostate Models. Molecular Cancer Therapeutics, 2018, 17, 2722-2731.	1.9	32
121	Defective Sec $61\hat{l}\pm1$ underlies a novel cause of autosomal dominant severe congenital neutropenia. Journal of Allergy and Clinical Immunology, 2020, 146, 1180-1193.	1.5	32
122	Characterization of the human secretory component gene promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 147-154.	2.4	30
123	Interaction of androgen and glucocorticoid receptor DNA-binding domains with their response elements. Molecular and Cellular Endocrinology, 1993, 90, R11-R16.	1.6	29
124	Regulation of Androgen Receptor-dependent Transcription by Coactivator MED1 Is Mediated through a Newly Discovered Noncanonical Binding Motif. Journal of Biological Chemistry, 2012, 287, 858-870.	1.6	29
125	Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone, 2016, 93, 33-42.	1.4	29
126	Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. Osteoporosis International, 2016, 27, 3227-3237.	1.3	29

#	Article	IF	CITATIONS
127	Influence of bone remodelling rate on quantitative ultrasound parameters at the calcaneus and DXA BMDa of the hip and spine in middle-aged and elderly European men: the European Male Ageing Study (EMAS). European Journal of Endocrinology, 2011, 165, 977-986.	1.9	28
128	Molecular underpinnings of enzalutamide resistance. Endocrine-Related Cancer, 2018, 25, R545-R557.	1.6	28
129	Androgen-receptor-specific DNA binding to an element in the first exon of the human secretory component gene. Biochemical Journal, 2001, 353, 611.	1.7	27
130	The Hinge Region of the Androgen Receptor Plays a Role in Proteasome-Mediated Transcriptional Activation. Annals of the New York Academy of Sciences, 2004, 1030, 587-592.	1.8	27
131	The Discovery of Novel Human Androgen Receptor Antagonist Chemotypes Using a Combined Pharmacophore Screening Procedure. ChemMedChem, 2013, 8, 644-651.	1.6	27
132	Functional Interplay between Two Response Elements with Distinct Binding Characteristics Dictates Androgen Specificity of the Mouse Sex-limited Protein Enhancer. Journal of Biological Chemistry, 2002, 277, 35191-35201.	1.6	26
133	Primary Rat Lacrimal Cells Undergo Acinar-like Morphogenesis on Reconstituted Basement Membrane and Express Secretory Component under Androgen Stimulation. Experimental Cell Research, 1998, 238, 377-388.	1.2	25
134	The Genomic Landscape of Prostate Cancer. International Journal of Molecular Sciences, 2013, 14, 10822-10851.	1.8	24
135	Effects of sex hormone-binding globulin (SHBG) on androgen bioactivity inÂvitro. Molecular and Cellular Endocrinology, 2016, 437, 280-291.	1.6	23
136	The survival impact of neoadjuvant hormonal therapy before radical prostatectomy for treatment of high-risk prostate cancer. Prostate Cancer and Prostatic Diseases, 2017, 20, 407-412.	2.0	23
137	Identification of a Functional Androgen-Response Element in the Exon 1-Coding Sequence of the Cystatin-Related Protein Gene crp2. Molecular Endocrinology, 1997, 11, 1033-1043.	3.7	22
138	Healthy birth after testicular extraction of sperm and <scp>ICSI</scp> from an azoospermic man with mild androgen insensitivity syndrome caused by an androgen receptor partial lossâ€ofâ€function mutation. Clinical Endocrinology, 2012, 77, 593-598.	1.2	22
139	A role for selective androgen response elements in the development of the epididymis and the androgen control of the 5 \hat{l}_{\pm} reductase II gene. FASEB Journal, 2012, 26, 4360-4372.	0.2	22
140	Tumor characteristics and outcome by androgen receptor expression in triple-negative breast cancer patients treated with neo-adjuvant chemotherapy. Breast Cancer Research and Treatment, 2019, 176, 699-708.	1.1	22
141	Apparent coactivation due to interference of expression constructs with nuclear receptor expression. Molecular and Cellular Endocrinology, 2000, 168, 21-29.	1.6	21
142	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	1.1	21
143	Anti-androgenic properties of Compound A, an analog of a non-steroidal plant compound. Molecular and Cellular Endocrinology, 2003, 201, 155-164.	1.6	20
144	The androgen receptor depends on ligandâ€binding domain dimerization for transcriptional activation. EMBO Reports, 2021, 22, e52764.	2.0	20

#	Article	IF	Citations
145	Variations in the exome of the LNCaP prostate cancer cell line. Prostate, 2012, 72, 1317-1327.	1.2	19
146	Association of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and parathyroid hormone with mortality among middle-aged and older European men. Age and Ageing, 2014, 43, 528-535.	0.7	19
147	Impact of Lymph Node Burden on Survival of High-risk Prostate Cancer Patients Following Radical Prostatectomy and Pelvic Lymph Node Dissection. Frontiers in Surgery, 2016, 3, 65.	0.6	19
148	Validation of the Decipher Test for Predicting Distant Metastatic Recurrence in Men with High-risk Nonmetastatic Prostate Cancer 10 Years After Surgery. European Urology Oncology, 2019, 2, 589-596.	2.6	19
149	Androgenic induction of cystatin-related protein and the C3 component of prostatic binding protein in primary cultures from the rat lacrimal gland. Molecular and Cellular Endocrinology, 1996, 121, 197-205.	1.6	18
150	DNA Demethylation-Dependent AR Recruitment and GATA Factors Drive Rhox5 Homeobox Gene Transcription in the Epididymis. Molecular Endocrinology, 2012, 26, 538-549.	3.7	18
151	The EMPaCT Classifier: A Validated Tool to Predict Postoperative Prostate Cancer-related Death Using Competing-risk Analysis. European Urology Focus, 2018, 4, 369-375.	1.6	17
152	Free Testosterone Reflects Metabolic as well as Ovarian Disturbances in Subfertile Oligomenorrheic Women. International Journal of Endocrinology, 2018, 2018, 1-8.	0.6	17
153	Androgen and glucocorticoid receptor direct distinct transcriptional programs by receptor-specific and shared DNA binding sites. Nucleic Acids Research, 2021, 49, 3856-3875.	6.5	17
154	Neoadjuvant degarelix with or without apalutamide followed by radical prostatectomy for intermediate and high-risk prostate cancer: ARNEO, a randomized, double blind, placebo-controlled trial. BMC Cancer, 2018, 18, 354.	1.1	16
155	The CHEK2 Variant C.349A> G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
156	Nuclear extracts enhance the interaction of fusion proteins containing the DNA-binding domain of the androgen and glucocorticoid receptor with androgen and glucocorticoid response elements. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 317-323.	1.2	15
157	Identification and Characterization of Androgen Response Elements. Methods in Molecular Biology, 2011, 776, 81-93.	0.4	15
158	Time to onset of antifracture efficacy and year-by-year persistence of effect of zoledronic acid in women with osteoporosis. Journal of Bone and Mineral Research, 2012, 27, 1487-1493.	3.1	15
159	A shortened tamoxifen induction scheme to induce CreER recombinase without side effects on the male mouse skeleton. Molecular and Cellular Endocrinology, 2017, 452, 57-63.	1.6	15
160	The role of TET-mediated DNA hydroxymethylation in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 41-55.	1.6	15
161	Androgen Receptor in Neurons Slows Age-Related Cortical Thinning in Male Mice. Journal of Bone and Mineral Research, 2019, 34, 508-519.	3.1	15
162	Rat prostatic binding protein: the complete sequence of the C2 gene and its flanking regions. Nucleic Acids Research, 1987, 15, 1627-1641.	6.5	14

#	Article	IF	CITATIONS
163	Genito-urinary genomics and emerging biomarkers for immunomodulatory cancer treatment. Seminars in Cancer Biology, 2018, 52, 216-227.	4.3	14
164	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
165	COMPARISON OF DIFFERENT ANDROGEN BIOASSAYS IN THE SCREENING FOR ENVIRONMENTAL (ANTI)ANDROGENIC ACTIVITY. Environmental Toxicology and Chemistry, 2005, 24, 2646.	2.2	13
166	Identification and Characterization of MEL-3, a Novel AR Antagonist That Suppresses Prostate Cancer Cell Growth. Molecular Cancer Therapeutics, 2012, 11, 1257-1268.	1.9	13
167	Androgen and estrogen actions on male physical activity: a story beyond muscle. Journal of Endocrinology, 2018, 238, R31-R52.	1.2	13
168	Clinical Actionability of the Genomic Landscape of Metastatic Castration Resistant Prostate Cancer. Cells, 2020, 9, 2494.	1.8	13
169	Testosterone Reduces Body Fat in Male Mice by Stimulation of Physical Activity Via Extrahypothalamic ERÎ \pm Signaling. Endocrinology, 2021, 162, .	1.4	13
170	The retinoblastoma protein-associated transcription repressor RBaK interacts with the androgen receptor and enhances its transcriptional activity. Journal of Molecular Endocrinology, 2003, 31, 583-596.	1.1	12
171	Calcium and Vitamin D Supplementation in Men. Journal of Osteoporosis, 2011, 2011, 1-6.	0.1	12
172	Bone turnover markers predict hip bone loss in elderly European men: results of the European Male Ageing Study (EMAS). Osteoporosis International, 2015, 26, 617-627.	1.3	12
173	Treatment-induced changes in the androgen receptor axis: Liquid biopsies as diagnostic/prognostic tools for prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 56-63.	1.6	12
174	A single 12.5-kilobase androgen-regulated mRNA encoding multiple proline-rich polypeptides in the ventral prostate of the rat Journal of Biological Chemistry, 1988, 263, 19159-19165.	1.6	12
175	Altered Vitamin D receptor–coactivator interactions reflect superagonism of Vitamin D analogs. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 65-68.	1.2	11
176	Preoperative Risk-Stratification of High-Risk Prostate Cancer: A Multicenter Analysis. Frontiers in Oncology, 2020, 10, 246.	1.3	11
177	Preclinical Models in Prostate Cancer: Resistance to AR Targeting Therapies in Prostate Cancer. Cancers, 2021, 13, 915.	1.7	11
178	The potential of tumour microenvironment markers to stratify the risk of recurrence in prostate cancer patients. PLoS ONE, 2020, 15, e0244663.	1.1	11
179	The androgen-dependent rat prostatic binding protein: comparison of the sequences in the $5\hat{a}\in^2$ part and upstream region of the Cl and C2 genes and analysis of their transcripts. Journal of Molecular Endocrinology, 1989, 3, 93-103.	1.1	10
180	Contribution of Recent Transgenic Models and Transcriptional Profiling Studies to Our Understanding of the Mechanisms by which Androgens Control Spermatogenesis. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 2-13.	0.5	10

#	Article	IF	CITATIONS
181	Estradiol and Age-Related Bone Loss in Men. Physiological Reviews, 2018, 98, 1-1.	13.1	10
182	Functional Androgen Response Elements in the Genes Coding for Prostatic Binding Protein. Annals of the New York Academy of Sciences, 1993, 684, 199-201.	1.8	8
183	$7\hat{l}\pm$ -methyl-19-nortestosterone vs. testosterone implants for hypogonadal osteoporosis: a preclinical study in the aged male orchidectomized rat model. Journal of Developmental and Physical Disabilities, 2011, 34, e601-e611.	3.6	8
184	Tumor Volume and Clinical Failure in Highâ€Risk Prostate Cancer Patients Treated With Radical Prostatectomy. Prostate, 2017, 77, 3-9.	1.2	8
185	Bone health in ageing men. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 1173-1208.	2.6	8
186	Tissue-specific androgen responses in primary cultures of lacrimal epithelial cells studied by adenoviral gene transfer. Journal of Steroid Biochemistry and Molecular Biology, 2001, 78, 319-328.	1.2	7
187	Estrogen receptor alpha signaling in extrahypothalamic neurons during late puberty decreases bone size and strength in female but not in male mice. FASEB Journal, 2020, 34, 7118-7126.	0.2	7
188	Novel model to study the physiological effects of temporary or prolonged sex steroid deficiency in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E415-E424.	1.8	7
189	The transcription intermediary factor $1\hat{l}^2$ coactivates the androgen receptor. Journal of Endocrinological Investigation, 2013, 36, 699-706.	1.8	7
190	Testosterone and bone., 2012,, 177-190.		6
191	Early effects of androgen deprivation on bone and mineral homeostasis in adult men: a prospective cohort study. European Journal of Endocrinology, 2020, 183, 181-189.	1.9	6
192	Molecular biology of the androgen responses. Andrologia, 2005, 37, 209-210.	1.0	5
193	Androgen signalling and steroid receptor crosstalk in endocrine cancers. Endocrine-Related Cancer, 2014, 21, E3-E5.	1.6	5
194	Multidisciplinary investigation links backward-speech trait and working memory through genetic mutation. Scientific Reports, 2016, 6, 20369.	1.6	5
195	Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate, 2018, 78, 1140-1156.	1.2	5
196	A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. Prostate, 2021, 81, 683-693.	1.2	5
197	A diseaseâ€associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2242-2253.	2.9	5
198	Androgen-Regulated Transcription in the Epithelium of the Rat Lacrimal Gland. Advances in Experimental Medicine and Biology, 1998, 438, 43-48.	0.8	4

#	Article	IF	Citations
199	Comparing the expression profiles of steroid hormone receptors and stromal cell markers in prostate cancer at different Gleason scores. Scientific Reports, 2018, 8, 14326.	1.6	4
200	Androgen action on renal calcium and phosphate handling: Effects of bisphosphonate treatment and low calcium diet. Molecular and Cellular Endocrinology, 2020, 514, 110891.	1.6	4
201	Intronic steroid response elements in prostate binding protein genes. Biochemical Society Transactions, 1990, 18, 560-561.	1.6	3
202	Nuclear Extracts Enhance Gel Retardation with Androgen and Glucocorticoid Receptor DNA-Binding Domains. Annals of the New York Academy of Sciences, 1993, 684, 202-204.	1.8	3
203	AR variants: lost in translation to clinical practice?. Nature Reviews Urology, 2019, 16, 451-452.	1.9	3
204	A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals. SLAS Discovery, 2020, 25, 695-708.	1.4	3
205	Tracking prostate cancer development at the single-cell level. Nature Reviews Urology, 2020, 17, 545-546.	1.9	3
206	Current and emerging therapies for localized high-risk prostate cancer. Expert Review of Anticancer Therapy, 2021, 21, 267-282.	1.1	3
207	Small-molecule profiling for steroid receptor activity using a universal steroid receptor reporter assay. Journal of Steroid Biochemistry and Molecular Biology, 2022, 217, 106043.	1.2	3
208	Antizyme Inhibitor 1 Regulates Matrikine Expression and Enhances the Metastatic Potential of Aggressive Primary Prostate Cancer. Molecular Cancer Research, 2022, 20, 527-541.	1.5	3
209	The T850D Phosphomimetic Mutation in the Androgen Receptor Ligand Binding Domain Enhances Recruitment at Activation Function 2. International Journal of Molecular Sciences, 2022, 23, 1557.	1.8	3
210	Functional characterization of an androgen response element. Biochemical Society Transactions, 1990, 18, 561-562.	1.6	2
211	Characterisation of the human Secretory Component gene promoter. Biochemical Society Transactions, 1997, 25, 186S-186S.	1.6	2
212	Concordant Androgen-Regulated Expression of Divergent <i>Rhox5</i> Promoters in Sertoli Cells. Endocrinology, 2022, 163, .	1.4	2
213	Androgen receptor gene mutation and partial androgen insensitivity syndrome: birth after testicular sperm extraction and ICSI. Fertility and Sterility, 2007, 88, S387.	0.5	1
214	Targeted disruption of androgen receptor in mouse osteocytes: The androgen receptor in osteocytes is important for the maintenance of bone structure in males. Bone, 2012, 50, S60.	1.4	1
215	Endocrinology of prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 1-2.	1.6	1
216	Multitasking and Interplay Between the Androgen Receptor Domains. , 2009, , 385-404.		0

#	Article	IF	CITATIONS
217	Selective and Classical Androgen Response Elements in Androgen-Regulated Gene Expression. , 2013, , 13-27.		0
218	The prognostic role of the androgen receptor in patients with triple-negative early breast cancers and primary surgery Journal of Clinical Oncology, 2019, 37, e12042-e12042.	0.8	0
219	Re: Molecular Features of Exceptional Response to Neoadjuvant Anti-androgen Therapy in High-risk Localized Prostate Cancer. European Urology, 2022, 81, 314-314.	0.9	O
220	Intake Patterns of Specific Alcoholic Beverages by Prostate Cancer Status. Cancers, 2022, 14, 1981.	1.7	0
221	Title is missing!. , 2020, 15, e0244663.		O
222	Title is missing!. , 2020, 15, e0244663.		0
223	Title is missing!. , 2020, 15, e0244663.		O
224	Title is missing!. , 2020, 15, e0244663.		0
225	Inactivation of AR or $ER\hat{l}\pm$ in extrahypothalamic neurons does not affect osteogenic response to loading in male mice. Endocrinology, 0, , .	1.4	o