
Monica A Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. Journal of Neurotrauma, 2022, 39, 285-299.	3.4	45
2	Transcutaneous spinal cord stimulation combined with locomotor training to improve walking ability in people with chronic spinal cord injury: study protocol for an international multi-centred double-blinded randomised sham-controlled trial (eWALK). Spinal Cord, 2022, 60, 491-497.	1.9	3
3	Prevalence of spasticity in humans with spinal cord injury with different injury severity. Journal of Neurophysiology, 2022, 128, 470-479.	1.8	4
4	Abnormal changes in motor cortical maps in humans with spinal cord injury. Journal of Physiology, 2021, 599, 5031-5045.	2.9	7
5	Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury. Experimental Neurology, 2021, 342, 113722.	4.1	17
6	Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury. Journal of Physiology, 2021, 599, 4441-4454.	2.9	13
7	Cerebellar contribution to sensorimotor adaptation deficits in humans with spinal cord injury. Scientific Reports, 2021, 11, 2507.	3.3	9
8	Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia. Experimental Neurology, 2021, 335, 113483.	4.1	27
9	Paired corticospinal-motoneuronal stimulation and exercise after spinal cord injury. Journal of Spinal Cord Medicine, 2021, 44, S23-S27.	1.4	7
10	Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury. Journal of Neurophysiology, 2020, 123, 454-461.	1.8	19
11	The Potential of Corticospinal-Motoneuronal Plasticity for Recovery after Spinal Cord Injury. Current Physical Medicine and Rehabilitation Reports, 2020, 8, 293-298.	0.8	3
12	Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia. Journal of Neuroscience, 2020, 40, 8831-8841.	3.6	26
13	Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain, 2020, 143, 1368-1382.	7.6	76
14	Vibration attenuates spasmâ€ ŀ ike activity in humans with spinal cord injury. Journal of Physiology, 2020, 598, 2703-2717.	2.9	14
15	Bilateral and asymmetrical contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with spinal cord injury. Journal of Neurophysiology, 2020, 124, 973-984.	1.8	9
16	Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia. Journal of Neuroscience, 2020, 40, 2633-2643.	3.6	76
17	Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury. Journal of Neuroscience, 2019, 39, 7872-7881.	3.6	44
18	Residual descending motor pathways influence spasticity after spinal cord injury. Annals of Neurology, 2019, 86, 28-41.	5.3	44

MONICA A PEREZ

#	Article	IF	CITATIONS
19	Changes in motor-evoked potential latency during grasping after tetraplegia. Journal of Neurophysiology, 2019, 122, 1675-1684.	1.8	13
20	Afferent input and sensory function after human spinal cord injury. Journal of Neurophysiology, 2018, 119, 134-144.	1.8	23
21	Phase-dependent deficits during reach-to-grasp after human spinal cord injury. Journal of Neurophysiology, 2018, 119, 251-261.	1.8	10
22	Effect of central lesions on a spinal circuit facilitating human wrist flexors. Scientific Reports, 2018, 8, 14821.	3.3	6
23	Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury. Brain Stimulation, 2018, 11, 1083-1092.	1.6	61
24	Gating of Sensory Input at Subcortical and Cortical Levels during Grasping in Humans. Journal of Neuroscience, 2018, 38, 7237-7247.	3.6	35
25	Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans. ELife, 2018, 7, .	6.0	53
26	Targeted-Plasticity in the Corticospinal Tract After Human Spinal Cord Injury. Neurotherapeutics, 2018, 15, 618-627.	4.4	38
27	Crossed corticospinal facilitation between arm and trunk muscles in humans. Journal of Neurophysiology, 2018, 120, 2595-2602.	1.8	12
28	Effect of coil orientation on motorâ€evoked potentials in humans with tetraplegia. Journal of Physiology, 2018, 596, 4909-4921.	2.9	9
29	Time-Dependent Discrepancies between Assessments of Sensory Function after Incomplete Cervical Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1778-1786.	3.4	11
30	Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. Journal of Neurophysiology, 2017, 118, 2171-2180.	1.8	72
31	Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. Journal of Physiology, 2017, 595, 6203-6217.	2.9	27
32	A novel cortical target to enhance hand motor output in humans with spinal cord injury. Brain, 2017, 140, 1619-1632.	7.6	47
33	Cortical and reticular contributions to human precision and power grip. Journal of Physiology, 2017, 595, 2715-2730.	2.9	43
34	Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning. Neuroscience, 2017, 366, 184-195.	2.3	16
35	Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 9778-9784.	3.6	94
36	How plastic are human spinal cord motor circuitries?. Experimental Brain Research, 2017, 235, 3243-3249.	1.5	12

Monica A Perez

#	Article	IF	CITATIONS
37	Distinct Corticocortical Contributions to Human Precision and Power Grip. Cerebral Cortex, 2017, 27, 5070-5082.	2.9	30
38	Altered corticospinal function during movement preparation in humans with spinal cord injury. Journal of Physiology, 2017, 595, 233-245.	2.9	18
39	Bilateral reach-to-grasp movement asymmetries after human spinal cord injury. Journal of Neurophysiology, 2016, 115, 157-167.	1.8	18
40	Interhemispheric connectivity during bimanual isometric force generation. Journal of Neurophysiology, 2016, 115, 1196-1207.	1.8	28
41	Impaired Organization of Paired-Pulse TMS-Induced I-Waves After Human Spinal Cord Injury. Cerebral Cortex, 2016, 26, 2167-2177.	2.9	52
42	Neural Control of Hand Movements. Motor Control, 2015, 19, 135-141.	0.6	2
43	Subcortical contribution to late TMS-induced I-waves in intact humans. Frontiers in Integrative Neuroscience, 2015, 9, 38.	2.1	32
44	Distinct Influence of Hand Posture on Cortical Activity during Human Grasping. Journal of Neuroscience, 2015, 35, 4882-4889.	3.6	37
45	Effects of Repetitive Transcranial Magnetic Stimulation on Recovery of Function After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2015, 96, S145-S155.	0.9	68
46	Subcortical Control of Precision Grip after Human Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 7341-7350.	3.6	44
47	Nonparetic Arm Force Does Not Overinhibit the Paretic Arm in Chronic Poststroke Hemiparesis. Archives of Physical Medicine and Rehabilitation, 2014, 95, 849-856.	0.9	23
48	Selective Activation of Ipsilateral Motor Pathways in Intact Humans. Journal of Neuroscience, 2014, 34, 13924-13934.	3.6	47
49	Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles. Journal of Neurophysiology, 2014, 111, 405-414.	1.8	54
50	Selective Effects of Baclofen on Use-Dependent Modulation of GABAB Inhibition after Tetraplegia. Journal of Neuroscience, 2013, 33, 12898-12907.	3.6	32
51	Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements. Journal of Neuroscience, 2013, 33, 16178-16188.	3.6	32
52	Aberrant Crossed Corticospinal Facilitation in Muscles Distant from a Spinal Cord Injury. PLoS ONE, 2013, 8, e76747.	2.5	22
53	Corticomuscular coherence during bilateral isometric arm voluntary activity in healthy humans. Journal of Neurophysiology, 2012, 107, 2154-2162.	1.8	23
54	Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury. Journal of Neurophysiology, 2012, 107, 2901-2911.	1.8	42

MONICA A PEREZ

#	Article	IF	CITATIONS
55	Motor Recovery after Spinal Cord Injury Enhanced by Strengthening Corticospinal Synaptic Transmission. Current Biology, 2012, 22, 2355-2361.	3.9	181
56	Corticospinal reorganization after spinal cord injury. Journal of Physiology, 2012, 590, 3647-3663.	2.9	147
57	Transcranial Magnetic Stimulation and Spinal Cord Injury. , 2012, , 323-336.		4
58	Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans. Journal of Neurophysiology, 2011, 105, 1594-1602.	1.8	21
59	The Effect of Bilateral Isometric Forces in Different Directions on Motor Cortical Function in Humans. Journal of Neurophysiology, 2010, 104, 2922-2931.	1.8	23
60	The Corticospinal System and Transcranial Magnetic Stimulation in Stroke. Topics in Stroke Rehabilitation, 2009, 16, 254-269.	1.9	43
61	Interhemispheric inhibition between primary motor cortices: what have we learned?. Journal of Physiology, 2009, 587, 725-726.	2.9	93
62	Scaling of motor cortical excitability during unimanual force generation. Cortex, 2009, 45, 1065-1071.	2.4	51
63	Mechanisms Underlying Functional Changes in the Primary Motor Cortex Ipsilateral to an Active Hand. Journal of Neuroscience, 2008, 28, 5631-5640.	3.6	238
64	Time-Specific Contribution of the Supplementary Motor Area to Intermanual Transfer of Procedural Knowledge. Journal of Neuroscience, 2008, 28, 9664-9669.	3.6	42
65	Neurophysiological Mechanisms Involved in Transfer of Procedural Knowledge. Journal of Neuroscience, 2007, 27, 1045-1053.	3.6	135
66	Task-Specific Depression of the Soleus H-Reflex After Cocontraction Training of Antagonistic Ankle Muscles. Journal of Neurophysiology, 2007, 98, 3677-3687.	1.8	67
67	Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. Journal of Physiology, 2006, 573, 843-855.	2.9	133
68	Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. Journal of Physiology, 2005, 568, 343-354.	2.9	72
69	Short-term adaptations in spinal cord circuits evoked by repetitive transcranial magnetic stimulation: possible underlying mechanisms. Experimental Brain Research, 2005, 162, 202-212.	1.5	57
70	Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Experimental Brain Research, 2004, 159, 197-205.	1.5	396
71	Repetitive Sensory Input Increases Reciprocal Ia Inhibition In Individuals With Incomplete Spinal Cord Injury. Journal of Neurologic Physical Therapy, 2004, 28, 114-121.	1.4	6
72	Inducing Hebbian Plasticity at Multiple Spinal Cord Levels Restores Grasping and Walking in Humans With Tetraplegia: A Prospective Study. SSRN Electronic Journal, 0, , .	0.4	1