Zeng-Xu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547326/publications.pdf

Version: 2024-02-01

		1040056	1058476	
15	218	9	14	
papers	citations	h-index	g-index	
15	15	15	145	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Research Bulletin, 2020, 155, 19-28.	3.0	43
2	Microencapsulated Schwann cell transplantation inhibits P2X2/3 receptors overexpression in a sciatic nerve injury rat model with neuropathic pain. Neuroscience Letters, 2018, 676, 51-57.	2.1	23
3	The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacological Research, 2020, 158, 104875.	7.1	22
4	Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury. Neural Regeneration Research, 2015, 10, 1332.	3.0	20
5	Effects of 1,8-cineole on neuropathic pain mediated by P2X2 receptor in the spinal cord dorsal horn. Scientific Reports, 2019, 9, 7909.	3.3	19
6	Microencapsulated Schwann cell transplantation inhibits P2X3 receptor expression in dorsal root ganglia and neuropathic pain. Neural Regeneration Research, 2018, 13, 1961.	3.0	18
7	1,8-cineole decreases neuropathic pain probably via a mechanism mediating P2X3 receptor in the dorsal root ganglion. Neurochemistry International, 2018, 121, 69-74.	3.8	17
8	Microencapsulated olfactory ensheathing cell transplantation reduces P2X4 receptor overexpression and inhibits neuropathic pain in rats. Brain Research, 2019, 1724, 146465.	2.2	12
9	Schwann cells and trigeminal neuralgia. Molecular Pain, 2020, 16, 174480692096380.	2.1	12
10	Effects of microencapsulated olfactory ensheathing cell transplantation on neuropathic pain and P2X7 receptor expression in the L4-5 spinal cord segment. Neuroscience Letters, 2019, 701, 48-53.	2.1	11
11	Microencapsulated olfactory ensheathing-cell transplantation reduces pain in rats by inhibiting P2X4 receptor overexpression in the dorsal root ganglion. NeuroReport, 2019, 30, 120-126.	1.2	9
12	P2X receptors and trigeminal neuralgia. NeuroReport, 2019, 30, 725-729.	1.2	5
13	Transplantation of microencapsulated olfactory ensheathing cells inhibits the P2X2 receptor over-expressionmediated neuropathic pain in the L4–5 spinal cord segment. International Journal of Neuroscience, 2020, 130, 976-982.	1.6	4
14	Olfactory Ensheathing Cells Alleviate Facial Pain in Rats with Trigeminal Neuralgia by Inhibiting the Expression of P2X7 Receptor. Brain Sciences, 2022, 12, 706.	2.3	3
15	The role of the P2X4 receptor in trigeminal neuralgia, a common neurological disorder. NeuroReport, 2021, Publish Ahead of Print, 407-413.	1.2	O