Yaiza Gonzalez-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Passive Film Properties of Martensitic Steels in Alkaline Environment: Influence of the Prior Austenite Grain Size. Metals, 2022, 12, 292.	1.0	1
2	Corrosion and Microstructural Investigation on Additively Manufactured 316L Stainless Steel: Experimental and Statistical Approach. Materials, 2022, 15, 1605.	1.3	3
3	Properties of Passive Films Formed on Ferrite-Martensite and Ferrite-Pearlite Steel Microstructures. Metals, 2021, 11, 594.	1.0	2
4	Effect of microstructural defects on passive layer properties of interstitial free (IF) ferritic steels in alkaline environment. Corrosion Science, 2021, 182, 109271.	3.0	18
5	Local changes in the microstructure, mechanical and electrochemical properties of friction stir welded joints from aluminium of varying grain size. Journal of Materials Research and Technology, 2021, 15, 5968-5987.	2.6	3
6	Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. International Journal of Adhesion and Adhesives, 2020, 96, 102450.	1.4	68
7	Internal failure of anode materials for lithium batteries — A critical review. Green Energy and Environment, 2020, 5, 22-36.	4.7	67
8	Molybdate as corrosion inhibitor for hot dip galvanised steel scribed to the substrate: A study based on global and localised electrochemical approaches. Corrosion Science, 2020, 175, 108893.	3.0	21
9	Corrosion Protection in Chloride Environments of Nanosilica Containing Epoxy Powder Coatings with Defects. Journal of the Electrochemical Society, 2020, 167, 161507.	1.3	9
10	Influence of inhibitor adsorption on readings of microelectrode during SVET measurements. Electrochimica Acta, 2019, 322, 134761.	2.6	14
11	Properties and performance of spinâ€onâ€glass coatings for the corrosion protection of stainless steels in chloride media. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1279-1291.	0.8	0
12	Mechanism of Passive Layer Formation on AA2024-T3 from Alkaline Lithium Carbonate Solutions in the Presence of Sodium Chloride. Journal of the Electrochemical Society, 2018, 165, C60-C70.	1.3	39
13	Additively manufactured biodegradable porous iron. Acta Biomaterialia, 2018, 77, 380-393.	4.1	185
14	Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching Organic Coatings. Journal of the Electrochemical Society, 2017, 164, C396-C406.	1.3	50
15	Corrosion resistance of AISI 316L coated with an air-cured hydrogen silsesquioxane based spin-on-glass enamel in chloride environment. Corrosion Science, 2017, 127, 110-119.	3.0	17
16	Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper. Corrosion Science and Technology, 2017, 16, 1-7.	0.2	2
17	Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects. Corrosion Science, 2016, 112, 138-149.	3.0	123
18	A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys. Corrosion Science, 2016, 113, 160-171.	3.0	61

YAIZA GONZALEZ-GARCIA

#	Article	IF	CITATIONS
19	pH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3. Progress in Organic Coatings, 2016, 99, 197-209.	1.9	81
20	Active and passive protection of AA2024-T3 by a hybrid inhibitor doped mesoporous sol–gel and top coating system. Surface and Coatings Technology, 2016, 303, 352-361.	2.2	30
21	Scanning Kelvin force microscopy study at the cut-edge of aluminum rich metal coated steel. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 16-22.	0.8	5
22	Study of the electrochemical behaviour of aluminized steel. Surface and Coatings Technology, 2014, 260, 34-38.	2.2	15
23	Scanning electrochemical microscopy to study the effect of crystallographic orientation on the electrochemical activity of pure copper. Electrochimica Acta, 2014, 116, 89-96.	2.6	87
24	Oxygen consumption upon electrochemically polarised zinc. Journal of Applied Electrochemistry, 2014, 44, 747-757.	1.5	19
25	Simulated and measured response of oxygen SECM-measurements in presence of a corrosion process. Electrochimica Acta, 2014, 146, 556-563.	2.6	20
26	On the use of mercury-coated tips in scanning electrochemical microscopy to investigate galvanic corrosion processes involving zinc and iron. Corrosion Science, 2012, 55, 401-406.	3.0	25
27	In Situ Scanning Electrochemical Microscopy (SECM) Detection of Metal Dissolution during Zinc Corrosion by Means of Mercury Sphere ap Microelectrode Tips. Chemistry - A European Journal, 2012, 18, 230-236.	1.7	38
28	Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals: Effect of oxygen. Corrosion Science, 2011, 53, 1910-1915.	3.0	39
29	Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: Synthesis and proof of concept. Progress in Organic Coatings, 2011, 70, 142-149.	1.9	166
30	A combined redox-competition and negative-feedback SECM study of self-healing anticorrosive coatings. Electrochemistry Communications, 2011, 13, 1094-1097.	2.3	59
31	A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings. Electrochimica Acta, 2011, 56, 9619-9626.	2.6	65
32	SECM study of defect repair in self-healing polymer coatings on metals. Electrochemistry Communications, 2011, 13, 169-173.	2.3	89
33	Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals. Progress in Organic Coatings, 2010, 69, 110-117.	1.9	45
34	Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: Revealing the early stages of coating breakdown in corrosive environments. Corrosion Science, 2010, 52, 748-753.	3.0	88
35	Characterization of coating systems by scanning electrochemical microscopy: Surface topology and blistering. Progress in Organic Coatings, 2009, 65, 435-439.	1.9	46
36	Evaluation of the corrosion performance of coil-coated steel sheet as studied by scanning electrochemical microscopy. Corrosion Science, 2008, 50, 1637-1643.	3.0	50

YAIZA GONZALEZ-GARCIA

#	Article	IF	CITATIONS
37	Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corrosion Science, 2007, 49, 726-739.	3.0	167
38	Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corrosion Science, 2007, 49, 3514-3526.	3.0	181
39	Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron. Corrosion Science, 2007, 49, 4568-4580.	3.0	96
40	Application of the scanning electrochemical microscope to the examination of organic coatings on metallic substrates. Progress in Organic Coatings, 2005, 53, 177-182.	1.9	66
41	Coil-coated steel: corrosion resistance and adhesion as a function of the composition of the intermediate galvanic layer. Journal of Adhesion Science and Technology, 2005, 19, 1141-1155.	1.4	9
42	Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope. Electrochemistry Communications, 2004, 6, 1212-1215.	2.3	96
43	Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential. Electrochemistry Communications, 2004, 6, 637-642.	2.3	126
44	Damage to paint coatings caused by electrolyte immersion as observed in situ by scanning electrochemical microscopy. Corrosion Science, 2004, 46, 2621-2628.	3.0	81