Ghasem Azemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fetal ECG Extraction from Sparse Representation of Multichannel Abdominal Recordings. Circuits, Systems, and Signal Processing, 2022, 41, 2027-2044.	1.2	6
2	An EEC-based methodology for the estimation of functional brain connectivity networks: Application to the analysis of newborn EEG seizure. Biomedical Signal Processing and Control, 2021, 63, 102229.	3.5	10
3	Classification of normal/abnormal PCG recordings using a time–frequency approach. Analog Integrated Circuits and Signal Processing, 2021, 109, 459-465.	0.9	7
4	Detection of epileptic seizures from compressively sensed EEG signals for wireless body area networks. Expert Systems With Applications, 2021, 172, 114630.	4.4	16
5	Effective connectivity in brain networks estimated using EEG signals is altered in children with ADHD. Computers in Biology and Medicine, 2021, 134, 104515.	3.9	16
6	A modified row-sparse multiple measurement vector recovery algorithm for reconstructing multichannel EEG signals from compressive measurements. Biomedical Signal Processing and Control, 2020, 60, 101956.	3.5	3
7	A novel multivariate phase synchrony measure: Application to multichannel newborn EEG analysis. , 2019, 84, 59-68.		17
8	A new NLEO based technique for the detection of burst–suppression patterns in multichannel neonatal EEG signals. Analog Integrated Circuits and Signal Processing, 2017, 92, 255-262.	0.9	0
9	Surrogate data test for nonlinearity of EEG signals: A newborn EEG burst suppression case study. , 2017, 70, 30-38.		8
10	Classifying Single-Trial EEG During Motor Imagery Using a Multivariate Mutual Information Based Phase Synchrony Measure. , 2017, , .		3
11	EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review. Clinical Neurophysiology, 2016, 127, 285-296.	0.7	74
12	Principles of time–frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection. Pattern Recognition, 2015, 48, 616-627.	5.1	90
13	Classification of fetal movement accelerometry through time-frequency features. , 2014, , .		6
14	Detection of neonatal EEG burst-suppression using a time-frequency approach. , 2014, , .		1
15	Non-invasivemonitoring of fetal movements using time-frequency features of accelerometry. , 2014, , .		10
16	Improved characterization of HRV signals based on instantaneous frequency features estimated from quadratic time–frequency distributions with data-adapted kernels. Biomedical Signal Processing and Control, 2014, 10, 153-165.	3.5	18
17	A review of time–frequency matched filter design with application to seizure detection in multichannel newborn EEG. , 2014, 28, 28-38.		38
18	Measuring Time-Varying Information Flow in Scalp EEG Signals: Orthogonalized Partial Directed Coherence. IEEE Transactions on Biomedical Engineering, 2014, 61, 680-693.	2.5	70

GHASEM AZEMI

#	Article	IF	CITATIONS
19	Estimating the scattering distribution of the received signals in multipath fading channels. Telecommunication Systems, 2014, 57, 337-345.	1.6	0
20	Automated detection of perinatal hypoxia using time–frequency-based heart rate variability features. Medical and Biological Engineering and Computing, 2014, 52, 183-191.	1.6	13
21	Robust estimation of highly-varying nonlinear instantaneous frequency of monocomponent signals using a lower-order complex-time distribution. Signal Processing, 2013, 93, 3251-3260.	2.1	19
22	Time-Frequency Processing of Nonstationary Signals: Advanced TFD Design to Aid Diagnosis with Highlights from Medical Applications. IEEE Signal Processing Magazine, 2013, 30, 108-119.	4.6	96
23	A time–frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals. , 2013, 23, 780-790.		24
24	Detection of perinatal hypoxia using time-frequency analysis of heart rate variability signals. , 2013, , .		2
25	Generalised phase synchrony within multivariate signals: An emerging concept in time-frequency analysis. , 2012, , .		8
26	Orthogonalized Partial Directed Coherence for Functional Connectivity Analysis of Newborn EEG. Lecture Notes in Computer Science, 2012, , 683-691.	1.0	9
27	EEG amplitude and correlation spatial decay analysis for neonatal head modelling. , 2012, , .		2
28	Performance evaluation of multi-component instantaneous frequency estimation techniques for heart rate variability analysis. , 2012, , .		3
29	Improving the classification of newborn EEG time-frequency representations using a combined time-frequency signal and image approach. , 2012, , .		11
30	Generalized Mean Phase Coherence for asynchrony abnormality detection in multichannel newborn EEG. , 2012, , .		1
31	A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	48
32	Time-frequency signal and image processing of non-stationary signals with application to the classification of newborn EEG abnormalities. , 2011, , .		16
33	EEG-based automatic epilepsy diagnosis using the instantaneous frequency with sub-band energies. , 2011, , .		11
34	Doppler spread estimation in microcellular systems using reduced interference time-frequency distribution of the received signals. , 2010, , .		3
35	Doppler Spread Estimation in Mobile Communication Systems Using the Ambiguity Function of the Received Signals. , 2009, , .		4
36	<i>K</i> â€factor estimation in shadowed Ricean mobile communication channels. Wireless Communications and Mobile Computing, 2009, 9, 1379-1386.	0.8	10

#	Article	IF	CITATIONS
37	IF-Based Velocity Estimation of the Mobile Units in Micro-Cellular Systems with Non-Isotropic Scattering Distribution. , 2009, , .		0
38	Moment-based Ricean K-factor estimation in the presence of shadowing. , 2007, , .		4
39	Mobile Unit Velocity Estimation Based on the Instantaneous Frequency of the Received Signal. IEEE Transactions on Vehicular Technology, 2004, 53, 716-724.	3.9	37
40	Ricean <tex>\$K\$</tex> -Factor Estimation in Mobile Communication Systems. IEEE Communications Letters, 2004, 8, 617-619.	2.5	36