Sneh Punia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547032/publications.pdf

Version: 2024-02-01

139 papers

4,330 citations

36 h-index 56 g-index

144 all docs 144 docs citations

times ranked

144

2165 citing authors

#	Article	IF	Citations
1	Black soybean (<i>Glycine max</i> (L.) Merr.): paving the way toward new nutraceutical. Critical Reviews in Food Science and Nutrition, 2023, 63, 6208-6234.	10.3	4
2	Beetroot as a novel ingredient for its versatile food applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 8403-8427.	10.3	8
3	Kaempferol: A flavonoid with wider biological activities and its applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 9580-9604.	10.3	43
4	Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Critical Reviews in Food Science and Nutrition, 2023, 63, 9539-9560.	10.3	12
5	Fermented barley bran: An improvement in phenolic compounds and antioxidant properties. Journal of Food Processing and Preservation, 2022, 46, e15543.	2.0	12
6	Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids, 2022, 123, 106986.	10.7	65
7	Plant-based proteins and their multifaceted industrial applications. LWT - Food Science and Technology, 2022, 154, 112620.	5.2	93
8	Oxygen permeability properties of nanocellulose reinforced biopolymer nanocomposites. Materials Today: Proceedings, 2022, 52, 2414-2419.	1.8	16
9	Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. LWT - Food Science and Technology, 2022, 158, 113036.	5.2	13
10	Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers, 2022, 14, 202.	4.5	157
11	Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, 2022, 14, 182.	4.5	121
12	Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomedicine and Pharmacotherapy, 2022, 146, 112498.	5.6	78
13	Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers, 2022, 14, 521.	4.5	56
14	Recent developments in cold plasmaâ€based enzyme activity (browning, cell wall degradation, and) Tj ETQq0 0 0) rgBT /Ov 11.7	erlock 10 Tf 5 20
15	A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. Journal of Functional Foods, 2022, 89, 104937.	3.4	24
16	Properties, preparation methods, and application of sour starches in the food. Trends in Food Science and Technology, 2022, 121, 44-58.	15.1	9
17	Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. International Journal of Biological Macromolecules, 2022, 203, 350-360.	7.5	40
18	Retrospecting the concept and industrial significance of LAB bacteriocins. Food Bioscience, 2022, 46, 101607.	4.4	5

#	Article	lF	Citations
19	Unraveling the effect of storage duration on antioxidant properties, physicochemical and sensorial parameters of ready to serve Kinnow-Amla beverages. Applied Food Research, 2022, 2, 100057.	4.0	12
20	Introduction to nanocellulose production from biological waste. , 2022, , 1-37.		2
21	Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers, 2022, 14, 874.	4.5	110
22	Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers, 2022, 14, 829.	4.5	28
23	Ultrasoundâ€assisted modification of gelation properties of proteins: A review. Journal of Texture Studies, 2022, 53, 763-774.	2.5	11
24	Effect of processing on bioactive profile, minerals, and bitternessâ€causing compounds of Kinnow jam. Journal of Food Processing and Preservation, 2022, 46, .	2.0	2
25	The Effect of Mild and Strong Heat Treatments on In vitro Antioxidant Properties of Barley (Hordeum) Tj ETQq1	1 0.78431 2.6	4 rgBT /Over
26	Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 2022, 46, 101615.	4.4	57
27	Modulation of lentil antinutritional properties using non-thermal mediated processing techniques – A review. Journal of Food Composition and Analysis, 2022, 109, 104498.	3.9	11
28	Development of starch-based films reinforced with cellulosic nanocrystals and essential oil to extend the shelf life of red grapes. Food Bioscience, 2022, 47, 101621.	4.4	25
29	Enzymatic modification of starch: A green approach for starch applications. Carbohydrate Polymers, 2022, 287, 119265.	10.2	79
30	Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocolloids, 2022, 130, 107689.	10.7	46
31	Preparation of antioxidantâ€rich tricolor pasta using microwave processed orange pomace and cucumber peel powder: A study on nutraceutical, textural, color, and sensory attributes. Journal of Texture Studies, 2022, 53, 834-843.	2.5	12
32	The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms, 2022, 10, 826.	3.6	40
33	Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers, 2022, 14, 1987.	4.5	33
34	Pearl millet starch-based nanocomposite films reinforced with Kudzu cellulose nanocrystals and essential oil: Effect on functionality and biodegradability. Food Research International, 2022, 157, 111384.	6.2	21
35	Glycaemic response of pseudocerealâ€based glutenâ€free food products: a review. International Journal of Food Science and Technology, 2022, 57, 4936-4944.	2.7	17
36	Natural Sources, Pharmacological Properties, and Health Benefits of Daucosterol: Versatility of Actions. Applied Sciences (Switzerland), 2022, 12, 5779.	2.5	11

#	Article	IF	CITATIONS
37	Natural Sources and Pharmacological Properties of Pinosylvin. Plants, 2022, 11, 1541.	3.5	16
38	Octenyl Succinic Anhydride Modified Pearl Millet Starches: An Approach for Development of Films/Coatings. Polymers, 2022, 14, 2478.	4.5	2
39	Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. Starch/Staerke, 2022, 74, .	2.1	13
40	Application of Electrolyzed Water in the Food Industry: A Review. Applied Sciences (Switzerland), 2022, 12, 6639.	2.5	17
41	Cold plasma for microbial safety: Principle, mechanism, and factors responsible. Journal of Food Processing and Preservation, 2022, 46, .	2.0	8
42	Effect of the non-covalent and covalent interactions between proteins and mono- or di-glucoside anthocyanins on \hat{l}^2 -lactoglobulin-digestibility. Food Hydrocolloids, 2022, 133, 107952.	10.7	10
43	Extraction of ultra-low gossypol protein from cottonseed: Characterization based on antioxidant activity, structural morphology and functional group analysis. LWT - Food Science and Technology, 2021, 140, 110692.	5.2	31
44	Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends in Food Science and Technology, 2021, 108, 58-70.	15.1	36
45	Solid state fermentation of fenugreek (Trigonella foenum-graecum): implications on bioactive compounds, mineral content and in vitro bioavailability. Journal of Food Science and Technology, 2021, 58, 1927-1936.	2.8	15
46	Effect of Different Modifications (Physical and Chemical) on Morphological, Pasting, and Rheological Properties of Black Rice (<i>Oryza sativa</i> L. Indica) Starch: A Comparative Study. Starch/Staerke, 2021, 73, .	2.1	17
47	Riceâ€bran oil: An emerging source of functional oil. Journal of Food Processing and Preservation, 2021, 45, e15318.	2.0	13
48	Mango (Mangifera indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Antioxidants, 2021, 10, 299.	5.1	51
49	Custard Apple (Annona squamosa L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Biological Activities. Biomolecules, 2021, 11, 614.	4.0	38
50	Rheological, thermal, and structural properties of high-pressure treated Litchi (Litchi chinensis) kernel starch. International Journal of Biological Macromolecules, 2021, 175, 229-234.	7.5	19
51	Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydrate Polymers, 2021, 260, 117776.	10.2	50
52	Cottonseed: A sustainable contributor to global protein requirements. Trends in Food Science and Technology, 2021, 111, 100-113.	15.1	70
53	Rice Bran Oil: Emerging Trends in Extraction, Health Benefit, and Its Industrial Application. Rice Science, 2021, 28, 217-232.	3.9	63
54	Nutritional Composition and Health Benefits. , 2021, , 75-97.		0

#	Article	IF	Citations
55	Millet Diseases and Their Control. , 2021, , 221-249.		O
56	Beneficial Role of Antioxidant Secondary Metabolites from Medicinal Plants in Maintaining Oral Health. Antioxidants, 2021, 10, 1061.	5.1	50
57	Millet-Based Food Products. , 2021, , 197-219.		0
58	Millet Grains: Taxonomy, History, and Nutritional Approach. , 2021, , 1-26.		0
59	Impact of Modification on Starch Properties. , 2021, , 129-169.		O
60	Physical and Functional Properties of Millets. , 2021, , 53-73.		0
61	Millet Starch: Pasting, Rheological, and Morphological Properties. , 2021, , 99-128.		O
62	Bioactive Compounds of Millets. , 2021, , 171-196.		0
63	Effect of Processing on Millet Properties. , 2021, , 27-51.		O
64	Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 2021, 115, 106595.	10.7	173
65	Mango seed starch: A sustainable and eco-friendly alternative to increasing industrial requirements. International Journal of Biological Macromolecules, 2021, 183, 1807-1817.	7.5	21
66	Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. Plants, 2021, 10, 1429.	3.5	40
67	Development and Characterization of Physical Modified Pearl Millet Starch-Based Films. Foods, 2021, 10, 1609.	4.3	41
68	Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
69	Development and Characterization of Fenugreek Protein-Based Edible Film. Foods, 2021, 10, 1976.	4.3	33
70	Plant-Based Antioxidant Extracts and Compounds in the Management of Oral Cancer. Antioxidants, 2021, 10, 1358.	5.1	26
71	Structural and Film-Forming Properties of Millet Starches: A Comparative Study. Coatings, 2021, 11, 954.	2.6	18
72	Process Standardization for Bread Preparation using Composite Blend of Wheat and Pearl Millet: Nutritional, Antioxidant and Sensory Approach. Current Research in Nutrition and Food Science, 2021, 9, 511-520.	0.8	4

#	Article	IF	Citations
73	Nano-cellulose reinforced starch bio composite films- A review on green composites. International Journal of Biological Macromolecules, 2021, 185, 849-860.	7.5	95
74	Recent trends in extraction of plant bioactives using green technologies: A review. Food Chemistry, 2021, 353, 129431.	8.2	92
75	Buckwheat. , 2021, , 253-266.		0
76	Effect of Cross-Linking Modification on Structural and Film-Forming Characteristics of Pearl Millet (Pennisetum glaucum L.) Starch. Coatings, 2021, 11, 1163.	2.6	9
77	Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern. Coatings, 2021, 11, 1106.	2.6	5
78	Proso-Millet-Starch-Based Edible Films: An Innovative Approach for Food Industries. Coatings, 2021, 11, 1167.	2.6	7
79	Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods, 2021, 10, 2181.	4.3	49
80	Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods, 2021, 10, 2282.	4.3	40
81	Therapeutic Uses of Wild Plants by Rural Inhabitants of Maraog Region in District Shimla, Himachal Pradesh, India. Horticulturae, 2021, 7, 343.	2.8	17
82	Ethnomedicinal Plants Used in the Health Care System: Survey of the Mid Hills of Solan District, Himachal Pradesh, India. Plants, 2021, 10, 1842.	3.5	22
83	Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomedicine and Pharmacotherapy, 2021, 142, 112018.	5.6	52
84	Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydrate Polymers, 2021, 269, 118319.	10.2	20
85	Documentation of Commonly Used Ethnoveterinary Medicines from Wild Plants of the High Mountains in Shimla District, Himachal Pradesh, India. Horticulturae, 2021, 7, 351.	2.8	22
86	Proso-millet starch: Properties, functionality, and applications. International Journal of Biological Macromolecules, 2021, 190, 960-968.	7. 5	35
87	Unraveling the efficacy of different treatments towards suppressing limonin and naringin content of Kinnow juice: An innovative report. LWT - Food Science and Technology, 2021, 152, 112341.	5.2	11
88	Litchi (Litchi chinensis) seed starch: Structure, properties, and applications - A review. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100080.	2.6	7
89	Jackfruit seed slimy sheath, a novel source of pectin: Studies on antioxidant activity, functional group, and structural morphology. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100054.	2.6	16
90	Effect of degree of cross linking on physicochemical, rheological and morphological properties of Sorghum starch. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100073.	2.6	18

#	Article	IF	CITATIONS
91	Recent advances in thermoplastic starches for food packaging: A review. Food Packaging and Shelf Life, 2021, 30, 100743.	7.5	84
92	Aspergillus oryzae Fermented Rice Bran: A Byproduct with Enhanced Bioactive Compounds and Antioxidant Potential. Foods, 2021, 10, 70.	4.3	26
93	Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers, 2021, 13, 3365.	4.5	67
94	Application of Encapsulation Technology in Edible Films: Carrier of Bioactive Compounds. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	13
95	Soybean Oil Enriched with Antioxidants Extracted from Watermelon (Citrullus colocynthis) Skin Sap and Coated in Hydrogel Beads via Ionotropic Gelation. Coatings, 2021, 11, 1370.	2.6	6
96	Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Bioscience, 2021, 44, 101444.	4.4	34
97	Sesame (Sesamum indicum) Seed., 2021,, 305-330.		10
98	Garlic (Allium sativum L.) Bioactives and Its Role in Alleviating Oral Pathologies. Antioxidants, 2021, 10, 1847.	5.1	40
99	Enrichment in Different Health Components of Barley Flour Using Twin-Screw Extrusion Technology to Support Nutritionally Balanced Diets. Frontiers in Nutrition, 2021, 8, 823148.	3.7	12
100	Development and Characterization of Active Native and Cross-Linked Pearl Millet Starch-Based Film Loaded with Fenugreek Oil. Foods, 2021, 10, 3097.	4.3	19
101	A novel starch from Pongamia pinnata seeds: Comparison of its thermal, morphological and rheological behaviour with starches from other botanical sources. International Journal of Biological Macromolecules, 2020, 143, 984-990.	7.5	16
102	Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. International Journal of Biological Macromolecules, 2020, 146, 232-242.	7. 5	60
103	Barley starch modifications: Physical, chemical and enzymatic - A review. International Journal of Biological Macromolecules, 2020, 144, 578-585.	7. 5	122
104	Barley starch: Structure, properties and in vitro digestibility - A review. International Journal of Biological Macromolecules, 2020, 155, 868-875.	7.5	46
105	Effect of debittered fenugreek (<i>Trigonella foenumâ€graecum</i> L.) flour addition on physical, nutritional, antioxidant, and sensory properties of wheat flour rusk. , 2020, 2, e21.		26
106	Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging. Trends in Food Science and Technology, 2020, 105, 223-237.	15.1	72
107	Evaluation of Cellulolytic Enzyme-Assisted Microwave Extraction of Punica granatum Peel Phenolics and Antioxidant Activity. Plant Foods for Human Nutrition, 2020, 75, 614-620.	3.2	20
108	Effect of heat moisture treatment on rheological and in vitro digestibility properties of pearl millet starches. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100002.	2.6	24

#	Article	IF	CITATIONS
109	Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, 2020, 164, 304-320.	7.5	172
110	Effect of shortening substitution with olive (<i>Olea europaea)</i> oil on textural properties, sensorial characteristics, and fatty acid composition of muffins. Journal of Food Processing and Preservation, 2020, 44, e14839.	2.0	2
111	Solidâ€state fermentation of lentil (<scp><i>Lens culinaris</i></scp> L.) with <i>Aspergillus awamori</i> : Effect on phenolic compounds, mineral content, and their bioavailability. , 2020, 2, e37.		37
112	Oat starch: Physico-chemical, morphological, rheological characteristics and its applications - A review. International Journal of Biological Macromolecules, 2020, 154, 493-498.	7.5	84
113	Kidney bean (<scp><i>Phaseolus vulgaris</i></scp>) starch: A review., 2020, 2, e52.		24
114	Effect of Î ³ -radiation on physico-chemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch. International Journal of Biological Macromolecules, 2020, 157, 584-590.	7.5	36
115	Kinetic, rheological and thermal studies of flaxseed (Linum usitatissiumum L.) oil and its utilization. Journal of Food Science and Technology, 2020, 57, 4014-4021.	2.8	6
116	Quantification of phenolic acids and antioxidant potential of wheat rusks as influenced by partial replacement with barley flour. Journal of Food Science and Technology, 2020, 57, 3782-3791.	2.8	10
117	Functional, thermal and rheological behavior of fenugreek (Trigonella foenum–graecum L.) gums from different cultivars: A comparative study. International Journal of Biological Macromolecules, 2020, 159, 406-414.	7.5	27
118	Essential Oil Nanoemulsions., 2020,, 227-247.		2
119	Mechanism of Action of Essential Fatty Acids. , 2020, , 89-100.		1
120	Application of Gum Arabic in Nanoemulsion for Safe Conveyance of Bioactive Components. Nanotechnology in the Life Sciences, 2019, , 85-98.	0.6	7
121	Nanotechnology: A Successful Approach to Improve Nutraceutical Bioavailability. Nanotechnology in the Life Sciences, 2019, , 119-133.	0.6	5
122	Omega 3-metabolism, absorption, bioavailability and health benefits–A review. PharmaNutrition, 2019, 10, 100162.	1.7	75
123	Impact of high pressure processing on the rheological, thermal and morphological characteristics of mango kernel starch. International Journal of Biological Macromolecules, 2019, 140, 149-155.	7.5	26
124	Chia seed (Salvia hispanica L.) mucilage (a heteropolysaccharide): Functional, thermal, rheological behaviour and its utilization. International Journal of Biological Macromolecules, 2019, 140, 1084-1090.	7.5	50
125	Rheological and pasting behavior of OSA modified mungbean starches and its utilization in cake formulation as fat replacer. International Journal of Biological Macromolecules, 2019, 128, 230-236.	7.5	31
126	Rheological behavior of wheat starch and barley resistant starch (type IV) blends and their starch noodles making potential. International Journal of Biological Macromolecules, 2019, 130, 595-604.	7.5	40

SNEH PUNIA

#	Article	IF	CITATIONS
127	Dynamic, shear and pasting behaviour of native and octenyl succinic anhydride (OSA) modified wheat starch and their utilization in preparation of edible films. International Journal of Biological Macromolecules, 2019, 133, 110-116.	7.5	39
128	Faba bean (<i>Vicia faba</i>) starch: Structure, properties, and in vitro digestibility—A review. , 2019, 1, e18.		32
129	Difference in protein content of wheat (Triticum aestivum L.): Effect on functional, pasting, color and antioxidant properties. Journal of the Saudi Society of Agricultural Sciences, 2019, 18, 378-384.	1.9	26
130	Impact of octenyl succinic anhydride on rheological properties of sorghum starch. Quality Assurance and Safety of Crops and Foods, 2019, 11, 221-229.	3.4	16
131	Characterization of mucilages extracted from different flaxseed (Linum usitatissiumum L.) cultivars: A heteropolysaccharide with desirable functional and rheological properties. International Journal of Biological Macromolecules, 2018, 117, 919-927.	7.5	48
132	Effect of toasting on physical, functional and antioxidant properties of flour from oat (Avena sativa) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
133	Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. Journal of Food Measurement and Characterization, 2017, 11, 1355-1361.	3.2	29
134	Fermentation of Cereals: A Tool to Enhance Bioactive Compounds. , 2017, , 157-170.		10
135	Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT - Food Science and Technology, 2016, 71, 323-328.	5.2	48
136	Handbook of Cereals, Pulses, Roots, and Tubers. , 0, , .		4
137	Essential Fatty Acids. , 0, , .		6
138	Germinated Barley Cultivars: Effect on Physicochemical and Bioactive Properties. Food Analytical Methods, 0, , .	2.6	7
139	Evaluating the Effects of Wheat Cultivar and Extrusion Processing on Nutritional, Health-Promoting, and Antioxidant Properties of Flour. Frontiers in Nutrition, 0, 9, .	3.7	О