
Yulia A Panina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6546884/publications.pdf Version: 2024-02-01

<u> Υπιτά Δ. Ράνινια</u>

#	Article	IF	CITATIONS
1	Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Frontiers in Physiology, 2018, 9, 1656.	1.3	45
2	Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Frontiers in Physiology, 2016, 7, 599.	1.3	42
3	The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro. Journal of Neuroinflammation, 2018, 15, 196.	3.1	41
4	Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior. Reviews in the Neurosciences, 2021, 32, 131-142.	1.4	21
5	Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Frontiers in Aging Neuroscience, 2018, 10, 234.	1.7	19
6	Early Life Stress: Consequences for the Development of the Brain. Neuroscience and Behavioral Physiology, 2018, 48, 233-250.	0.2	13
7	Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. Reviews in the Neurosciences, 2015, 26, 143-59.	1.4	11
8	Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines, 2021, 9, 1092.	1.4	11
9	Tight junction proteins of cerebral endothelial cells in early postnatal development. Cell and Tissue Biology, 2016, 10, 372-377.	0.2	9
10	CD157 and Brain Immune System in (Patho)physiological Conditions: Focus on Brain Plasticity. Frontiers in Immunology, 2020, 11, 585294.	2.2	8
11	The coexpression of CD157/CD11b/CD18 in an experimental model of Parkinson's disease. Neurochemical Journal, 2015, 9, 279-283.	0.2	3
12	Perinatal Brain Injury is Accompanied by Disturbances in Expression of SLC Protein Superfamily in Endotheliocytes of Hippocampal Microvessels. Bulletin of Experimental Biology and Medicine, 2016, 161, 770-774.	0.3	3
13	Changes in the Permeability and Expression of Markers of the Structural and Functional Integrity of the Blood–Brain Barrier under Early Postnatal Hypoxia in vivo. Neurochemical Journal, 2018, 12, 228-240.	0.2	2
14	Expression of thrombospondin-1 and CD36 and CD47 receptors in the rat brain after exposure to damaging factors in the early postnatal period. Biology Bulletin, 2017, 44, 307-314.	0.1	0
15	Expression of GABAergic and glutamatergic neurons after olfactory stimulation in the mouse piriform cortex during postnatal development. Annals of Clinical and Experimental Neurology, 2022, 16, 32-38.	0.1	0