List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6546527/publications.pdf Version: 2024-02-01

LIMINLENC

#	Article	IF	CITATIONS
1	High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Scientific Reports, 2013, 3, .	3.3	514
2	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catalysis, 2014, 4, 3797-3805.	11.2	351
3	Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 1575-1583.	13.7	348
4	Base-Free Oxidation of Alcohols to Esters at Room Temperature and Atmospheric Conditions using Nanoscale Co-Based Catalysts. ACS Catalysis, 2015, 5, 1850-1856.	11.2	291
5	High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol. Journal of the American Chemical Society, 2006, 128, 3504-3505.	13.7	280
6	Selective Oxidation of Saturated Hydrocarbons Using Au–Pd Alloy Nanoparticles Supported on Metal–Organic Frameworks. ACS Catalysis, 2013, 3, 647-654.	11.2	211
7	Well-Defined ZIF-Derived Fe–N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 9699-9709.	8.0	196
8	Atomic Feâ€Doped MOFâ€Derived Carbon Polyhedrons with High Active enter Density and Ultraâ€High Performance toward PEM Fuel Cells. Advanced Energy Materials, 2019, 9, 1802856.	19.5	196
9	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 2020, 12, 21.	27.0	159
10	g-C ₃ N ₄ promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030.	10.3	152
11	Effect of Redox Cocatalysts Location on Photocatalytic Overall Water Splitting over Cubic NaTaO ₃ Semiconductor Crystals Exposed with Equivalent Facets. ACS Catalysis, 2016, 6, 2182-2191.	11.2	149
12	Formation of a Tubular Assembly by Ultrathin Ti _{0.8} Co _{0.2} N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen–/Metal–Air Fuel Cells. ACS Catalysis, 2018, 8, 8970-8975.	11.2	147
13	Efficient hydrogen peroxide synthesis by metal-free polyterthiophene <i>via</i> photoelectrocatalytic dioxygen reduction. Energy and Environmental Science, 2020, 13, 238-245.	30.8	146
14	Tuning the Catalytic Activity of Ru@Pt Core–Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness. Journal of Physical Chemistry C, 2013, 117, 1748-1753.	3.1	140
15	Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 6165-6174.	11.2	130
16	Phosphorus and Nitrogen Dual Doped and Simultaneously Reduced Graphene Oxide with High Surface Area as Efficient Metal-Free Electrocatalyst for Oxygen Reduction. Catalysts, 2015, 5, 981-991.	3.5	122
17	Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 16801-16809.	10.3	115
18	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	19.5	109

#	Article	IF	CITATIONS
19	Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon, 2014, 69, 294-301.	10.3	106
20	Nitrogen-doped graphene prepared by a transfer doping approach forÂthe oxygen reduction reaction application. Journal of Power Sources, 2014, 245, 801-807.	7.8	102
21	Cobalt and Nitrogen Codoped Graphene with Inserted Carbon Nanospheres as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. ACS Sustainable Chemistry and Engineering, 2016, 4, 4131-4136.	6.7	101
22	Two-Dimensional Bimetallic Zn/Fe-Metal-Organic Framework (MOF)-Derived Porous Carbon Nanosheets with a High Density of Single/Paired Fe Atoms as High-Performance Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 13878-13887.	8.0	100
23	A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2017, 5, 5829-5837.	10.3	93
24	In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 12354-12360.	10.3	93
25	High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction. ACS Catalysis, 2017, 7, 3810-3817.	11.2	84
26	High-Performance Doped Carbon Catalyst Derived from Nori Biomass with Melamine Promoter. Electrochimica Acta, 2014, 138, 353-359.	5.2	83
27	Photoassisted Oxygen Reduction Reaction in H ₂ –O ₂ Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 14748-14751.	13.8	81
28	Hemin: A Highly Effective Electrocatalyst Mediating the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 2604-2610.	3.1	79
29	Assessing the Influence of Side-Chain and Main-Chain Aromatic Benzyltrimethyl Ammonium on Anion Exchange Membranes. ACS Applied Materials & Interfaces, 2014, 6, 7585-7595.	8.0	79
30	Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery. Journal of Colloid and Interface Science, 2020, 567, 410-418.	9.4	75
31	Correlation between the photoactive character and the structures of two novel metal organic frameworks. Journal of Materials Chemistry, 2011, 21, 7895.	6.7	73
32	UIOâ€66â€NH ₂ â€Derived Mesoporous Carbon Catalyst Coâ€Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs. Small, 2019, 15, e1803520.	10.0	73
33	Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. Electrochemical Energy Reviews, 2018, 1, 324-387.	25.5	72
34	Hollow Loofah‣ike N, O oâ€Đoped Carbon Tube for Electrocatalysis of Oxygen Reduction. Advanced Functional Materials, 2019, 29, 1900015.	14.9	68
35	Pd nanoparticles decorating flower-like Co ₃ O ₄ nanowire clusters to form an efficient, carbon/binder-free cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 15626-15632.	10.3	67
36	Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: A highly active metal-free electrocatalyst for oxygen reduction. Carbon, 2016, 99, 272-279.	10.3	65

#	Article	IF	CITATIONS
37	Improving Potassium-Ion Batteries by Optimizing the Composition of Prussian Blue Cathode. ACS Applied Energy Materials, 2019, 2, 6528-6535.	5.1	65
38	High-Performance, Ultralow Platinum Membrane Electrode Assembly Fabricated by In Situ Deposition of a Pt Shell Layer on Carbon-Supported Pd Nanoparticles in the Catalyst Layer Using a Facile Pulse Electrodeposition Approach. ACS Catalysis, 2015, 5, 4318-4324.	11.2	64
39	A hybrid metal phosphate–phosphite material grafted with electron deficient organic components showing interesting fluorescent and photosensitive properties. Journal of Materials Chemistry A, 2013, 1, 4945.	10.3	63
40	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 32168-32178.	8.0	63
41	Antiperovskite Nitrides CuNCo _{3–<i>x</i>} V _{<i>x</i>} : Highly Efficient and Durable Electrocatalysts for the Oxygen-Evolution Reaction. Nano Letters, 2019, 19, 7457-7463.	9.1	62
42	MOF-Templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li–O2 battery cathode. Journal of Power Sources, 2020, 450, 227725.	7.8	62
43	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 11224-11231.	10.3	61
44	Hierarchically open-porous carbon networks enriched with exclusive Fe–Nx active sites as efficient oxygen reduction catalysts towards acidic H2–O2 PEM fuel cell and alkaline Zn–air battery. Chemical Engineering Journal, 2020, 390, 124479.	12.7	61
45	Preparation of anatase F doped TiO2 sol and its performance for photodegradation of formaldehyde. Journal of Materials Science, 2007, 42, 8193-8202.	3.7	58
46	A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte. Electrochimica Acta, 2015, 176, 1108-1115.	5.2	58
47	Design of ultralong-life Li–CO ₂ batteries with IrO ₂ nanoparticles highly dispersed on nitrogen-doped carbon nanotubes. Journal of Materials Chemistry A, 2020, 8, 3763-3770.	10.3	58
48	Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 15822-15828.	10.3	58
49	Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. Journal of Power Sources, 2015, 288, 253-260.	7.8	55
50	Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14101-14110.	7.1	54
51	Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 12240-12246.	10.3	52
52	Prussian Blue [K ₂ FeFe(CN) ₆] Doped with Nickel as a Superior Cathode: An Efficient Strategy To Enhance Potassium Storage Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 16659-16667.	6.7	52
53	A Co-doped porous niobium nitride nanogrid as an effective oxygen reduction catalyst. Journal of Materials Chemistry A, 2017, 5, 14278-14285.	10.3	51
54	Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 1742-1748.	10.3	51

#	Article	IF	CITATIONS
55	Design and Fabrication of a Dualâ€Photoelectrode Fuel Cell towards Costâ€Effective Electricity Production from Biomass. ChemSusChem, 2017, 10, 99-105.	6.8	51
56	Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst. International Journal of Hydrogen Energy, 2010, 35, 7874-7880.	7.1	50
57	Series-connected hexacations cross-linked anion exchange membranes for diffusion dialysis in acid recovery. Journal of Membrane Science, 2019, 570-571, 120-129.	8.2	50
58	Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine. Applied Catalysis B: Environmental, 2014, 158-159, 60-69.	20.2	49
59	Cross-linked multiblock copoly(arylene ether sulfone) ionomer/nano-ZrO ₂ composite anion exchange membranes for alkaline fuel cells. RSC Advances, 2014, 4, 41398-41410.	3.6	49
60	Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 3530-3537.	8.0	48
61	Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE). Electrochimica Acta, 2018, 277, 110-115.	5.2	47
62	Template-Free Preparation of 3D Porous Co-Doped VN Nanosheet-Assembled Microflowers with Enhanced Oxygen Reduction Activity. ACS Applied Materials & Interfaces, 2018, 10, 11604-11612.	8.0	47
63	Molecular packing, crystal to crystal transformation, electron transfer behaviour, and photochromic and fluorescent properties of three hydrogen-bonded supramolecular complexes containing benzenecarboxylate donors and viologen acceptors. RSC Advances, 2014, 4, 42983-42990.	3.6	46
64	Tin and Silicon Binary Oxide on the Carbon Support of a Pt Electrocatalyst with Enhanced Activity and Durability. ACS Catalysis, 2015, 5, 2242-2249.	11.2	46
65	IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes as an efficient cathode catalyst for high-performance Li-O2 batteries. Ceramics International, 2017, 43, 14082-14089.	4.8	46
66	Enhanced water management in the cathode of an air-breathing PEMFC using a dual catalyst layer and optimizing the gas diffusion and microporous layers. International Journal of Hydrogen Energy, 2015, 40, 3961-3967.	7.1	45
67	In situ construction of Ir@Pt/C nanoparticles in the cathode layer of membrane electrode assemblies with ultra-low Pt loading and high Pt exposure. Journal of Power Sources, 2017, 355, 83-89.	7.8	45
68	Recent advances in nanostructured transition metal nitrides for fuel cells. Journal of Materials Chemistry A, 2020, 8, 20803-20818.	10.3	45
69	Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique. Journal of Power Sources, 2010, 195, 756-761.	7.8	43
70	Enhancing the cyclability of Li–O 2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst. Journal of Power Sources, 2017, 337, 173-179.	7.8	43
71	Large-Scale Synthesis of Monodisperse Red Blood Cell (RBC)-Like Polymer Particles. ACS Macro Letters, 2016, 5, 174-176.	4.8	42
72	Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungstenâ€doped Bismuth Vanadate Photoanodes. ChemSusChem, 2015, 8, 4049-4055.	6.8	41

#	Article	IF	CITATIONS
73	A core–shell Pd ₁ Ru ₁ Ni ₂ @Pt/C catalyst with a ternary alloy core and Pt monolayer: enhanced activity and stability towards the oxygen reduction reaction by the addition of Ni. Journal of Materials Chemistry A, 2016, 4, 847-855.	10.3	40
74	Synthesis of a 3D photochromic coordination polymer with an interpenetrating arrangement: crystal engineering for electron transfer between donor and acceptor units. CrystEngComm, 2012, 14, 5137.	2.6	38
75	A renewable wood-derived cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 14291-14298.	10.3	38
76	A strategy to unlock the potential of CrN as a highly active oxygen reduction reaction catalyst. Journal of Materials Chemistry A, 2020, 8, 8575-8585.	10.3	38
77	Synthesis and structure of a mixed crystal containing tris(4-pyridiniumyl)-1,3,5-triazine and benzenetetracarboxylate ions: constructing a new photochromic molecular system viaself-assembly. CrystEngComm, 2012, 14, 786-788.	2.6	37
78	Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Research, 2013, 6, 571-580.	10.4	37
79	A hollow spherical doped carbon catalyst derived from zeolitic imidazolate framework nanocrystals impregnated/covered with iron phthalocyanines. Journal of Materials Chemistry A, 2016, 4, 7859-7868.	10.3	37
80	Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 11737-11744.	8.0	37
81	Nitrogen, Sulfur Co-doped Carbon Derived from Naphthalene-Based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 161-166.	5.1	36
82	High performance LiFePO4 microsphere composed of nanofibers with an alcohol-thermal approach. Journal of Materials Chemistry A, 2013, 1, 4546.	10.3	35
83	Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal–Organic Frameworks by Spillover. Journal of Physical Chemistry C, 2011, 115, 13829-13836.	3.1	34
84	Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE. Electrochimica Acta, 2015, 182, 963-970.	5.2	34
85	Fog-like fluffy structured N-doped carbon with a superior oxygen reduction reaction performance to a commercial Pt/C catalyst. Nanoscale, 2015, 7, 3780-3785.	5.6	34
86	Enhanced low-humidity performance in a proton exchange membrane fuel cell by developing a novel hydrophilic gas diffusion layer. International Journal of Hydrogen Energy, 2020, 45, 937-944.	7.1	34
87	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	8.0	33
88	High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction. Journal of Power Sources, 2016, 324, 134-141.	7.8	31
89	Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium–oxygen batteries. Journal of Materials Chemistry A, 2021, 9, 10747-10757.	10.3	31
90	Optimizing the Electronic Structure of Ordered Pt–Co–Ti Ternary Intermetallic Catalyst to Boost Acidic Oxygen Reduction. ACS Catalysis, 2022, 12, 7571-7578.	11.2	31

#	Article	IF	CITATIONS
91	Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure. Applied Surface Science, 2014, 314, 7-14.	6.1	30
92	Three-Dimensional Biocarbon Framework Coupled with Uniformly Distributed FeSe Nanoparticles Derived from Pollen as Bifunctional Electrocatalysts for Oxygen Electrode Reactions. ACS Applied Materials & Interfaces, 2018, 10, 32133-32141.	8.0	29
93	Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer. Journal of Power Sources, 2019, 443, 227284.	7.8	29
94	Highly conductive and permselective anion exchange membranes for electrodialysis desalination with series-connected dications appending flexible hydrophobic tails. Desalination, 2020, 474, 114184.	8.2	29
95	Rationally Designed Three-Dimensional N-Doped Graphene Architecture Mounted with Ru Nanoclusters as a High-Performance Air Cathode for Lithium–Oxygen Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 6109-6117.	6.7	28
96	Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer. Electrochimica Acta, 2017, 253, 142-150.	5.2	26
97	Photoassisted Oxygen Reduction Reaction in H ₂ –O ₂ Fuel Cells. Angewandte Chemie, 2016, 128, 14968-14971.	2.0	25
98	A magnetic-field-assisted solution-phase route to cobalt thin film composed of cobalt nanosheets. Journal of Materials Chemistry, 2009, 19, 5207.	6.7	24
99	Platinum decorated Ru/C: Effects of decorated platinum on catalyst structure and performance for the methanol oxidation reaction. Journal of Power Sources, 2011, 196, 54-61.	7.8	24
100	A pulse electrochemical deposition method to prepare membrane electrode assemblies with ultra-low anode Pt loadings through in situ construction of active core–shell nanoparticles on an electrode. Journal of Power Sources, 2014, 260, 27-33.	7.8	24
101	Cobalt and Nitrogen Co-Doped Graphene-Carbon Nanotube Aerogel as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts, 2018, 8, 275.	3.5	24
102	Biomass-derived 3D hierarchical N-doped porous carbon anchoring cobalt-iron phosphide nanodots as bifunctional electrocatalysts for Li O2 batteries. Journal of Power Sources, 2019, 412, 433-441.	7.8	23
103	Influence of hydrophobic components tuning of poly (aryl ether sulfone)s ionomers based anion exchange membranes on diffusion dialysis for acid recovery. Journal of Membrane Science, 2021, 636, 119562.	8.2	23
104	From Interwoven to Noninterpenetration: Crystal Structural Motifs of Two New Manganese–Organic Frameworks Mediated by the Substituted Group of the Bridging Ligand. European Journal of Inorganic Chemistry, 2008, 2008, 628-634.	2.0	22
105	Anion exchange membranes by bromination of benzylmethyl-containing poly(arylene ether)s for alkaline membrane fuel cells. RSC Advances, 2014, 4, 29682-29693.	3.6	22
106	A one-pot method to synthesize high performance multielement co-doped reduced graphene oxide catalysts for oxygen reduction. Electrochemistry Communications, 2014, 47, 49-53.	4.7	22
107	Enhanced low-humidity performance in a proton exchange membrane fuel cell by the insertion of microcrystalline cellulose between the gas diffusion layer and the anode catalyst layer. International Journal of Hydrogen Energy, 2015, 40, 15613-15621.	7.1	22
108	Influence of the ions distribution of anion-exchange membranes on electrodialysis. Desalination, 2018, 437, 34-44.	8.2	22

#	Article	IF	CITATIONS
109	Electrostatic interaction based hollow Pt and Ru assemblies toward methanol oxidation. RSC Advances, 2012, 2, 7479.	3.6	21
110	Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Scientific Reports, 2015, 5, 11604.	3.3	21
111	Nitrogen self-doped carbon nanoparticles derived from spiral seaweeds for oxygen reduction reaction. RSC Advances, 2016, 6, 27535-27541.	3.6	21
112	High-performance membrane electrode assembly with multi-functional Pt/SnO2–SiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions. International Journal of Hydrogen Energy, 2016, 41, 9197-9203.	7.1	20
113	Doped reduced graphene oxide mounted with IrO2 nanoparticles shows significantly enhanced performance as a cathode catalyst for Li-O2 batteries. Electrochimica Acta, 2016, 192, 431-438.	5.2	20
114	Rechargeable Zinc–Air Battery with Ultrahigh Power Density Based on Uniform N, Co Codoped Carbon Nanospheres. ACS Applied Materials & Interfaces, 2019, 11, 44153-44160.	8.0	20
115	Enhancement of capacity at high charge/discharge rate and cyclic stability of LiFePO4/C by nickel doping. Ionics, 2013, 19, 445-450.	2.4	19
116	Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction. Electrochimica Acta, 2017, 248, 349-355.	5.2	19
117	Influence of 2,2′,6,6′â€ŧetramethyl biphenolâ€based anionâ€exchange membranes on the diffusion dialysis hydrochloride acid. Journal of Applied Polymer Science, 2017, 134, 45333.	of 2.6	19
118	Nanoconfined Nitrogenâ€Đoped Carbon oated Hierarchical TiCoN Composites with Enhanced ORR Performance. ChemElectroChem, 2018, 5, 2041-2049.	3.4	19
119	Highly effective and stable doped carbon catalyst with three-dimensional porous structure and well-covered Fe3C nanoparticles prepared with C3N4 and tannic acid as template/precursors. Journal of Power Sources, 2019, 417, 117-124.	7.8	19
120	Highly permselective tadpole-type ionic anion exchange membranes for electrodialysis desalination. Journal of Membrane Science, 2020, 600, 117861.	8.2	19
121	Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation. Materials, 2013, 6, 2689-2700.	2.9	18
122	High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diffusion Layer Using an Atomic Layer Deposition Technique. Electrochimica Acta, 2015, 177, 168-173.	5.2	18
123	Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination. Separation and Purification Technology, 2021, 265, 118526.	7.9	18
124	Hydrogen storage of multiwalled carbon nanotubes coated with Pd-Ni nanoparticles under moderate conditions. Science Bulletin, 2006, 51, 2959-2963.	1.7	17
125	Review of SO 2â°' 4 /M x O y solid superacid catalysts. Frontiers of Chemical Engineering in China, 2009, 3, 330-343.	0.6	17
126	An ultra high performance multi-element doped mesoporous carbon catalyst derived from poly(4-vinylpyridine). Journal of Materials Chemistry A, 2015, 3, 23512-23519.	10.3	16

#	Article	IF	CITATIONS
127	Three dimensional palladium nanoflowers with enhanced electrocatalytic activity towards the anodic oxidation of formic acid. Journal of Materials Chemistry A, 2015, 3, 973-977.	10.3	16
128	Uniformly dispersed carbon-supported bimetallic ruthenium–platinum electrocatalysts for the methanol oxidation reaction. Journal of Materials Science, 2017, 52, 3457-3466.	3.7	16
129	In-situ formation of N doped hollow graphene Nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. Journal of Alloys and Compounds, 2020, 828, 154238.	5.5	16
130	A new 3-D microporous Ln(III)–Cu(I) framework constructed by pyridine-3,5-dicarboxylate. Journal of Coordination Chemistry, 2009, 62, 2290-2298.	2.2	15
131	Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir. Applied Surface Science, 2015, 357, 558-563.	6.1	15
132	Enhanced electro-oxidation of formic acid by a PdPt bimetallic catalyst on a CeO2-modified carbon support. Science China Chemistry, 2012, 55, 391-397.	8.2	14
133	High performance of core–shell structured Ir@Pt/C catalyst prepared by a facile pulse electrochemical deposition. Electrochemistry Communications, 2014, 46, 115-119.	4.7	14
134	Multi-block copolymers with fluorene-containing hydrophilic segments densely functionalized by side-chain quaternary ammonium groups as anion exchange membranes. RSC Advances, 2016, 6, 41453-41464.	3.6	13
135	Uniform Nitrogen and Sulfur Co-doped Carbon Bowls for the Electrocatalyzation of Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7148-7154.	6.7	13
136	Robust InNCo _{3–<i>x</i>} Mn <i>_{<i>x</i>}</i> Nitride-Supported Pt Nanoparticles as High-Performance Bifunctional Electrocatalysts for Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 5293-5300.	5.1	13
137	Enhancing the cycling stability of a carbonate-based electrolyte for high-voltage lithium batteries by adding succinic anhydride. Ionics, 2015, 21, 2535-2542.	2.4	12
138	Improvement of proton exchange membrane fuel cell performance in low-humidity conditions by adding hygroscopic agarose powder to the catalyst layer. Journal of Power Sources, 2015, 273, 168-173.	7.8	12
139	Randomly oriented Ni–P/nanofiber/nanotube composite prepared by electrolessly plated nickel–phosphorus alloys for fuel cell applications. Journal of Materials Science, 2017, 52, 8432-8443.	3.7	12
140	Platinum-decorated palladium-nanoflowers as high efficient low platinum catalyst towards oxygen reduction. International Journal of Hydrogen Energy, 2017, 42, 22909-22914.	7.1	12
141	High porosity nitrogen and phosphorous Co-doped carbon nanosheets as an efficient catalyst for oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 9749-9756.	7.1	12
142	A mesoporous carbon derived from 4,4′-dipyridyl iron as an efficient catalyst for oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 2439-2444.	10.3	12
143	High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature. RSC Advances, 2014, 4, 63062-63069.	3.6	11
144	Synthesis of three-dimensional Pd nanospheres decorated with a Pt monolayer for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 14018-14026.	7.1	11

#	Article	IF	CITATIONS
145	Spinel LiMn ₂ O ₄ Nanoparticles Grown in Situ on Nitrogen-Doped Reduced Graphene Oxide as an Efficient Cathode for a Li-O ₂ /Li-Ion Twin Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 430-439.	6.7	11
146	UIO-66-NH ₂ -derived mesoporous carbon used as a high-performance anode for the potassium-ion battery. RSC Advances, 2021, 11, 1039-1049.	3.6	10
147	Effects of tailoring and dehydrated cross-linking on morphology evolution of ordered mesoporous carbons. RSC Advances, 2016, 6, 19515-19521.	3.6	9
148	MOF-Derived Carbon Materials Mounted with Highly Dispersed Ru and MoO ₃ for Rechargeable Li–O ₂ Cathode Yield Enhanced Cyclability. ACS Sustainable Chemistry and Engineering, 2019, 7, 2296-2303.	6.7	9
149	Methanol-tolerant Se^Pt/C: effects of Se content on the structure and electrocatalytic performance for oxygen reduction reaction. Ionics, 2020, 26, 1315-1323.	2.4	9
150	Effects of Co doping sites on the electrochemical performance of LiNi0.5Mn1.5O4 as a cathode material. Ionics, 2020, 26, 3777-3783.	2.4	9
151	Construction of a high-performance air-breathing cathode using platinum catalyst supported by carbon black and carbon nanotubes. International Journal of Hydrogen Energy, 2016, 41, 9191-9196.	7.1	8
152	Highâ€Performance 3D Pinecone‣ike LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode for Lithium″on Batteries. Energy Technology, 2019, 7, 1800769.	3.8	8
153	Yucca-like CoO–CoN Nanoarray with Abundant Oxygen Vacancies as a High-Performance Cathode for Lithium–Oxygen Batteries. ACS Applied Energy Materials, 2020, 3, 12000-12008.	5.1	8
154	Platinum Nanoparticles on Interconnected Ni ₃ P/Carbon Nanotube–Carbon Nanofiber Hybrid Supports with Enhanced Catalytic Activity for Fuel Cells. ChemElectroChem, 2017, 4, 109-114.	3.4	7
155	Biogelatin-Derived and N,S-Codoped 3D Network Carbon Materials Anchored with RuO ₂ as an Efficient Cathode for Rechargeable Li–O ₂ Batteries. Journal of Physical Chemistry C, 2021, 125, 21914-21921.	3.1	7
156	High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications. Science China Technological Sciences, 2010, 53, 264-271.	4.0	6
157	Nitrogen-containing porous cerium trimetaphosphimate as a new efficient base catalyst. Journal of Materials Chemistry, 2011, 21, 6144.	6.7	6
158	Organic-phase synthesis of Li3V2(PO4)3@Carbon nanocrystals and their lithium storage properties. RSC Advances, 2018, 8, 19335-19340.	3.6	6
159	Design of a Multispherical Cavity Carbon with In Situ Silica Modifications and Its Selfâ€Humidification Application on Fuel Cell Anode Support. Advanced Materials Interfaces, 2018, 5, 1800314.	3.7	6
160	Ultralow platinum-loading PtPdRu@PtRulr/C catalyst with excellent CO tolerance and high performance for the methanol oxidation reaction. Rare Metals, 2014, 33, 337-342.	7.1	5
161	Enhanced durability and self-humidification of platinum catalyst through decoration with SnSi binary oxide. Journal of Applied Electrochemistry, 2018, 48, 1163-1173.	2.9	5
162	Synthesis and Properties of Symmetric Sideâ€Chain Quaternized Poly(Arylene Ether Sulfone)s for Anion Exchange Membrane Fuel Cells. Macromolecular Chemistry and Physics, 2018, 219, 1700416.	2.2	4

#	Article	IF	CITATIONS
163	Significant Enhancement of the Capacity and Cycling Stability of Lithium-Rich Manganese-Based Layered Cathode Materials via Molybdenum Surface Modification. Molecules, 2022, 27, 2100.	3.8	4
164	Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	3
165	Synthesis and properties of hydroxide conductive polymers carrying dense aromatic side-chain quaternary ammonium groups. Chinese Journal of Polymer Science (English Edition), 2017, 35, 823-836.	3.8	3
166	Influence of Oxygen Contents on the Microstructure, High Temperature Oxidation and Corrosion Resistance Properties of Cr–Si–O–N Coatings. Coatings, 2018, 8, 19.	2.6	3
167	MNi4.8Sn0.2(M=La, Nd)-supported multi-walled carbon nanotube composites as hydrogen storage materials. Science Bulletin, 2007, 52, 1616-1622.	1.7	2
168	Facile synthesis of high dispersion γ-Fe2O3–Au nanoparticles within mesoporous silica spheres. RSC Advances, 2015, 5, 49914-49919.	3.6	2
169	Enhanced performance of LiNi0.03Mo0.01Mn1.96O4 cathode materials coated with biomass-derived carbon layer. Ionics, 2019, 25, 917-925.	2.4	2
170	A comparative study on the catalytic activities and stabilities of atomic-layered platinum on dispersed Ti0.9Cu0.1N nanoparticles supported by N-doped carbon nanotubes (N-CNTs) and reduced graphene oxide (N-rGO). International Journal of Hydrogen Energy, 2020, 45, 1857-1866.	7.1	2
171	Metallic cobalt encapsulated in N-doped carbon nanowires: a highly active bifunctional catalyst for oxygen reduction and evolution. Ionics, 2021, 27, 3501-3509.	2.4	2
172	Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 154-159.	0.4	1
173	Effects of preparation conditions on the morphology and performance of palladium nanostructures. International Journal of Hydrogen Energy, 2019, 44, 1525-1533.	7.1	1
174	Methods for Remit Voltage Reversal of Proton Exchange Membrane Fuel Cells. Frontiers in Energy Research, 2022, 10, .	2.3	1
175	Lithium-rich layered nickel–manganese oxides as high-performance cathode materials: the effects of composition and PEG on performance. Ionics, 2016, 22, 2067-2073.	2.4	0