Andrew Glennerster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6546408/publications.pdf

Version: 2024-02-01

38 papers 794 citations

623734 14 h-index 27 g-index

42 all docs 42 docs citations

times ranked

42

460 citing authors

#	Article	IF	CITATIONS
1	The effect of display size on disparity scaling from differential perspective and vergence cues. Vision Research, 1996, 36, 1255-1264.	1.4	124
2	The task-dependent use of binocular disparity and motion parallax information. Vision Research, 2000, 40, 3725-3734.	1.4	84
3	Humans Ignore Motion and Stereo Cues in Favor of a Fictional Stable World. Current Biology, 2006, 16, 428-432.	3.9	83
4	Spatial calibration of an optical see-through head-mounted display. Journal of Neuroscience Methods, 2008, 173, 140-146.	2.5	48
5	Latitude and longitude vertical disparities. Journal of Vision, 2009, 9, 11-11.	0.3	43
6	Using high-fidelity virtual reality to study perception in freely moving observers. Journal of Vision, 2015, 15, 3.	0.3	40
7	The Science Behind Virtual Reality Displays. Annual Review of Vision Science, 2019, 5, 529-547.	4.4	40
8	Systematic distortions of perceptual stability investigated using immersive virtual reality. Vision Research, 2005, 45, 2177-2189.	1.4	39
9	Cue combination for 3D location judgements. Journal of Vision, 2011, 10, 5-5.	0.3	38
10	Cues to Viewing Distance for Stereoscopic Depth Constancy. Perception, 1998, 27, 1357-1365.	1.2	37
11	Evidence for Surface-Based Processing of Binocular Disparity. Current Biology, 2002, 12, 825-828.	3.9	32
12	A Demonstration of â€~Broken' Visual Space. PLoS ONE, 2012, 7, e33782.	2.5	23
13	Fixation could simplify, not complicate, the interpretation of retinal flow. Vision Research, 2001, 41, 815-834.	1.4	17
14	Sensitivity to depth relief on slanted surfaces. Journal of Vision, 2004, 4, 3-3.	0.3	16
15	An automated calibration method for non-see-through head mounted displays. Journal of Neuroscience Methods, 2011, 199, 328-335.	2.5	16
16	Disparity with respect to a local reference plane as a dominant cue for stereoscopic depth relief. Vision Research, 2006, 46, 4321-4332.	1.4	14
17	Stereo and motion parallax cues in human 3D vision: Can they vanish without a trace?. Journal of Vision, 2006, 6, 12.	0.3	12
18	Modelling human visual navigation using multi-view scene reconstruction. Biological Cybernetics, 2013, 107, 449-464.	1.3	10

#	Article	IF	Citations
19	A moving observer in a three-dimensional world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150265.	4.0	10
20	Route selection in non-Euclidean virtual environments. PLoS ONE, 2021, 16, e0247818.	2.5	10
21	View-Based Approaches to Spatial Representation in Human Vision. Lecture Notes in Computer Science, 2009, , 193-208.	1.3	9
22	High Fidelity Immersive Virtual Reality. , 0, , .		8
23	Comparison of view-based and reconstruction-based models of human navigational strategy. Journal of Vision, 2017, 17, 11.	0.3	6
24	No single, stable 3D representation can explain pointing biases in a spatial updating task. Scientific Reports, 2019, 9, 12578.	3.3	6
25	Marr's vision: Twenty-five years on. Current Biology, 2007, 17, R397-R399.	3.9	5
26	Humans Use Predictive Kinematic Models to Calibrate Visual Cues to Three-Dimensional Surface Slant. Journal of Neuroscience, 2014, 34, 10394-10401.	3.6	5
27	Combining cues to judge distance and direction in an immersive virtual reality environment. Journal of Vision, 2021, 21, 10.	0.3	4
28	Pointing Errors in Non-metric Virtual Environments. Lecture Notes in Computer Science, 2018, , 43-57.	1.3	4
29	Lessons from reinforcement learning for biological representations of space. Vision Research, 2020, 174, 79-93.	1.4	3
30	View-based modelling of human visual navigation errors. , 2011, , .		2
31	Visual stability—what is the problem?. Frontiers in Psychology, 2015, 6, 958.	2.1	2
32	Measuring end-to-end latency of a virtual reality system objectively and psychophysically. Journal of Vision, 2017, 17, 355.	0.3	1
33	Experimentally disambiguating models of sensory cue combination. Journal of Vision, 2018, 18, 788.	0.3	1
34	Representing 3D Shape and Location. , 2013, , 201-212.		0
35	Navigation and pointing errors in non-metric environments Journal of Vision, 2017, 17, 721.	0.3	0
36	Change blindness for changes in 3D structure. Journal of Vision, 2017, 17, 1206.	0.3	0

#	Article	IF	CITATIONS
37	Detecting 3D location change in the presence of grouping cues. Journal of Vision, 2018, 18, 503.	0.3	O
38	Models of navigation and pointing in non-metric environments. Journal of Vision, 2018, 18, 1040.	0.3	0