
Raffaella Rastaldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6546234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival. Circulation Research, 2005, 97, 663-673.	2.0	494
2	Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3766-3771.	3.3	458
3	Local Activation or Implantation of Cardiac Progenitor Cells Rescues Scarred Infarcted Myocardium Improving Cardiac Function. Circulation Research, 2008, 103, 107-116.	2.0	266
4	Exogenous High-Mobility Group Box 1 Protein Induces Myocardial Regeneration After Infarction via Enhanced Cardiac C-Kit + Cell Proliferation and Differentiation. Circulation Research, 2005, 97, e73-83.	2.0	256
5	Post–conditioning induced cardioprotection requires signaling through a redox–sensitive mechanism, mitochondrial ATP–sensitive K+ channel and protein kinase C activation. Basic Research in Cardiology, 2006, 101, 180-189.	2.5	222
6	Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radical Biology and Medicine, 2003, 34, 33-43.	1.3	193
7	Nitric oxide and cardiac function. Life Sciences, 2007, 81, 779-793.	2.0	188
8	Cardioprotection: A radical view. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 781-793.	0.5	176
9	Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovascular Research, 2007, 75, 168-177.	1.8	128
10	Post–conditioning reduces infarct size in the isolated rat heart: Role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Research in Cardiology, 2006, 101, 168-179.	2.5	118
11	Ischemic preconditioning. Life Sciences, 2001, 69, 1-15.	2.0	91
12	Effects of apelin on the cardiovascular system. Heart Failure Reviews, 2015, 20, 505-518.	1.7	73
13	Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Research in Cardiology, 2009, 104, 390-402.	2.5	70
14	Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2308-H2315.	1.5	68
15	Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H719-H727.	1.5	60
16	Effect of endothelins on the cardiovascular system. Journal of Cardiovascular Medicine, 2006, 7, 645-652.	0.6	44
17	Dual Role of Autophagy in Regulation of Mesenchymal Stem Cell Senescence. Frontiers in Cell and Developmental Biology, 2020, 8, 276.	1.8	36
18	Effect of Apelin-Apelin Receptor System in Postischaemic Myocardial Protection: A Pharmacological Postconditioning Tool?. Antioxidants and Redox Signaling, 2011, 14, 909-922.	2.5	31

RAFFAELLA RASTALDO

#	Article	IF	CITATIONS
19	The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. Biomaterials, 2014, 35, 92-104.	5.7	27
20	Cytochrome P-450 metabolite of arachidonic acid mediates bradykinin-induced negative inotropic effect. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2823-H2832.	1.5	26
21	F0F1ATP synthase activity is differently modulated by coronary reactive hyperemia before and after ischemic preconditioning in the goat. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2192-H2200.	1.5	25
22	Early homing of adult mesenchymal stem cells in normal and infarcted isolated beating hearts. Journal of Cellular and Molecular Medicine, 2008, 12, 507-521.	1.6	25
23	Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy. Biomedicines, 2021, 9, 1275.	1.4	24
24	Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. Nanomaterials, 2021, 11, 661.	1.9	23
25	Balance of Nitric Oxide and Reactive Oxygen Species in Myocardial Reperfusion Injury and Protection. Journal of Cardiovascular Pharmacology, 2013, 62, 567-575.	0.8	22
26	Apelinâ€induced cardioprotection against ischaemia/reperfusion injury: roles of epidermal growth factor and Src. Acta Physiologica, 2018, 222, e12924.	1.8	22
27	Cardioprotection of PLGA/gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury: A feasibility study. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1253-1264.	1.3	22
28	Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food and Function, 2015, 6, 2231-2239.	2.1	21
29	Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration. Nanomedicine, 2018, 13, 1121-1138.	1.7	21
30	Omega 3 has a beneficial effect on ischemia/reperfusion injury, but cannot reverse the effect of stressful forced exercise. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 20-26.	1.1	17
31	Injured cardiomyocytes promote dental pulp mesenchymal stem cell homing. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2152-2161.	1.1	15
32	Comparison between the effects of pentobarbital or ketamine/nitrous oxide anesthesia on metabolic and endothelial components of coronary reactive hyperemia. Life Sciences, 2001, 69, 729-738.	2.0	14
33	Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. Nanomaterials, 2020, 10, 1587.	1.9	14
34	HYPEROXIA CONFERS MYOCARDIAL PROTECTION IN MECHANICALLY VENTILATED RATS THROUGH THE GENERATION OF FREE RADICALS AND OPENING OF MITOCHONDRIAL ATPâ€SENSITIVE POTASSIUM CHANNELS. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 64-71.	0.9	13
35	Fatty acids are important for the Frank-Starling mechanism and Gregg effect but not for catecholamine response in isolated rat hearts. Acta Physiologica Scandinavica, 2002, 176, 167-176.	2.3	8
36	A Lipophilic Nitric Oxide Donor and a Lipophilic Antioxidant Compound Protect Rat Heart Against Ischemia–Reperfusion Injury if Given as Hybrid Molecule but Not as a Mixture. Journal of Cardiovascular Pharmacology, 2012, 59, 241-248.	0.8	8

RAFFAELLA RASTALDO

#	Article	IF	CITATIONS
37	Preconditioning cardioprotection and exercise performance: a radical point of view. Sport Sciences for Health, 2015, 11, 137-151.	0.4	6
38	Silica Nanoparticle Internalization Improves Chemotactic Behaviour of Human Mesenchymal Stem Cells Acting on the SDF11±/CXCR4 Axis. Biomedicines, 2022, 10, 336.	1.4	6
39	Low concentrations of an nitric oxide-donor combined with a liposoluble antioxidant compound enhance protection against reperfusion injury in isolated rat hearts. Journal of Physiology and Pharmacology, 2010, 61, 21-7.	1.1	6
40	Ischemic preconditioning changes the pattern of coronary reactive hyperemia regardless of mitochondrial ATP-sensitive K+ channel blockade. Life Sciences, 2002, 71, 2299-2309.	2.0	5
41	Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. International Journal of Molecular Sciences, 2021, 22, 13054.	1.8	5
42	Mitochondrial ATP-sensitive channel opener does not induce vascular preconditioning, but potentiates the effect of a preconditioning ischemia on coronary reactive hyperemia in the anesthetized goat. Pflugers Archiv European Journal of Physiology, 2001, 443, 166-174.	1.3	4
43	Endothelial cytochrome P450 contributes to the acetylcholine-induced cardiodepression in isolated rat hearts. Acta Physiologica Scandinavica, 2004, 182, 11-20.	2.3	3
44	Role of three adipokines in metabolic syndrome. Polish Archives of Internal Medicine, 2016, 126, 219-221.	0.3	2
45	Effects of Nitric Oxide Donor Antioxidants Containing the Phenol Vitamin E Substructure and a Furoxan Moiety on Ischemia/Reperfusion Injury. Arzneimittelforschung, 2009, 59, 111-116.	0.5	1