Idoia Garmendia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6546076/publications.pdf

Version: 2024-02-01

758635 940134 17 642 12 16 h-index citations g-index papers 17 17 17 785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimum growth and quality of the edible ice plant under saline conditions. Journal of the Science of Food and Agriculture, 2022, 102, 2686-2692.	1.7	7
2	Nutritional properties of Tempranillo grapevine leaves are affected by clonal diversity, mycorrhizal symbiosis and air temperature regime. Plant Physiology and Biochemistry, 2018, 130, 542-554.	2.8	14
3	Responsiveness of Durum Wheat to Mycorrhizal Inoculation Under Different Environmental Scenarios. Journal of Plant Growth Regulation, 2017, 36, 855-867.	2.8	6
4	Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. Journal of Food Composition and Analysis, 2016, 51, 37-44.	1.9	33
5	Pearl millet growth and biochemical alterations determined by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop and Pasture Science, 2015, 66, 831.	0.7	20
6	Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Scientia Horticulturae, 2015, 195, 163-172.	1.7	20
7	Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds. Scientia Horticulturae, 2014, 180, 40-51.	1.7	27
8	Comparative Study of Substrate-Based and Commercial Formulations of Arbuscular Mycorrhizal Fungi in Romaine Lettuce Subjected to Salt Stress. Journal of Plant Nutrition, 2014, 37, 1717-1731.	0.9	10
9	The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Scientia Horticulturae, 2013, 164, 145-154.	1.7	49
10	Nutritional quality of outer and inner leaves of green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Scientia Horticulturae, 2013, 151, 103-111.	1.7	63
11	Incoherent electromagnetic model for vineyards at C-band. , 2012, , .		O
12	Analysis of the polarimetric response of vineyards at C-band. Canadian Journal of Remote Sensing, 2012, 38, 223-239.	1.1	6
13	Elevated <scp>CO₂</scp> may impair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality ofÂlettuce. Annals of Applied Biology, 2012, 161, 180-191.	1.3	49
14	Arbuscular Mycorrhizal Fungi (AMF) Improved Growth and Nutritional Quality of Greenhouse-Grown Lettuce. Journal of Agricultural and Food Chemistry, 2011, 59, 5504-5515.	2.4	183
15	Defence-related Enzymes in Pepper Roots During Interactions with Arbuscular Mycorrhizal Fungi and/or Verticillium dahliae. BioControl, 2006, 51, 293-310.	0.9	54
16	Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza, 2005, 15, 345-356.	1.3	32
17	Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biological Control, 2004, 31, 296-305.	1.4	69