
Mayeul Collot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescently Labeled Branched Copolymer Nanoparticles for <i>In Situ</i> Characterization of Nanovectors and Imaging of Cargo Release. ACS Applied Nano Materials, 2022, 5, 4241-4251.	2.4	2
2	lmaging and Measuring Vesicular Acidification with a Plasma Membrane-Targeted Ratiometric pH Probe. Analytical Chemistry, 2022, 94, 5996-6003.	3.2	13
3	Study of the spontaneous nano-emulsification process with different octadecyl succinic anhydride derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128858.	2.3	0
4	Rational Design of Self-Quenched Rhodamine Dimers as Fluorogenic Aptamer Probes for Live-Cell RNA Imaging. Analytical Chemistry, 2022, 94, 6657-6664.	3.2	6
5	Advanced functional fluorescent probes for cell plasma membranes. Current Opinion in Chemical Biology, 2022, 69, 102161.	2.8	21
6	Dye‣oaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Advanced Healthcare Materials, 2021, 10, e2001289.	3.9	54
7	Recent advances in dioxaborine-based fluorescent materials for bioimaging applications. Materials Horizons, 2021, 8, 501-514.	6.4	29
8	Tunable functionalization of nano-emulsions using amphiphilic polymers. Soft Matter, 2021, 17, 1788-1795.	1.2	3
9	Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. Materials Advances, 2021, 2, 3213-3233.	2.6	19
10	Fluorogenic Squaraine Dendrimers for Backgroundâ€Free Imaging of Integrin Receptors in Cancer Cells. Chemistry - A European Journal, 2021, 27, 6795-6803.	1.7	0
11	Ultrabright Green-Emitting Nanoemulsions Based on Natural Lipids-BODIPY Conjugates. Nanomaterials, 2021, 11, 826.	1.9	4
12	Dissection of the anti-Candida albicans mannan immune response using synthetic oligomannosides reveals unique properties of β-1,2 mannotriose protective epitopes. Scientific Reports, 2021, 11, 10825.	1.6	10
13	Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102379.	1.7	12
14	Probing Variations of Reduction Activity at the Plasma Membrane Using a Targeted Ratiometric FRET Probe. ACS Applied Materials & Interfaces, 2021, 13, 40315-40324.	4.0	12
15	Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe. Organic and Biomolecular Chemistry, 2021, 19, 3389-3395.	1.5	15
16	Near infrared emitting molecular rotor based on merocyanine for probing the viscosity of cellular lipid environments. Materials Chemistry Frontiers, 2021, 5, 2459-2469.	3.2	16
17	Confronting molecular rotors and self-quenched dimers as fluorogenic BODIPY systems to probe biotin receptors in cancer cells. Chemical Communications, 2021, 57, 4807-4810.	2.2	5
18	A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells. Nature Chemical Biology, 2020, 16, 69-76.	3.9	89

#	Article	IF	CITATIONS
19	Molecular and Functional Diversity of Distinct Subpopulations of the Stressed Insulin-Secreting Cell's Vesiculome. Frontiers in Immunology, 2020, 11, 1814.	2.2	17
20	Stealth and Bright Monomolecular Fluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer. ACS Nano, 2020, 14, 13924-13937.	7.3	29
21	Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain. ACS Nano, 2020, 14, 9755-9770.	7.3	48
22	A near-infrared fluorogenic dimer enables background-free imaging of endogenous GPCRs in living mice. Chemical Science, 2020, 11, 6824-6829.	3.7	15
23	Near infrared fluorogenic probe as a prodrug model for evaluating cargo release by nanoemulsions. Journal of Materials Chemistry B, 2020, 8, 5938-5944.	2.9	7
24	Lipid-core/polymer-shell hybrid nanoparticles: synthesis and characterization by fluorescence labeling and electrophoresis. Soft Matter, 2020, 16, 4173-4181.	1.2	19
25	Probing biotin receptors in cancer cells with rationally designed fluorogenic squaraine dimers. Chemical Science, 2020, 11, 8240-8248.	3.7	34
26	Further insights into release mechanisms from nano-emulsions, assessed by a simple fluorescence-based method. Journal of Colloid and Interface Science, 2020, 578, 768-778.	5.0	8
27	Molecular Tuning of Styryl Dyes Leads to Versatile and Efficient Plasma Membrane Probes for Cell and Tissue Imaging. Bioconjugate Chemistry, 2020, 31, 875-883.	1.8	32
28	BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. Journal of Materials Chemistry B, 2019, 7, 5199-5210.	2.9	43
29	A fluorogenic BODIPY molecular rotor as an apoptosis marker. Chemical Communications, 2019, 55, 6902-6905.	2.2	46
30	Optimizing the Fluorescence Properties of Nanoemulsions for Single Particle Tracking in Live Cells. ACS Applied Materials & Interfaces, 2019, 11, 13079-13090.	4.0	18
31	Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Developmental Cell, 2019, 48, 554-572.e7.	3.1	160
32	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7.	2.5	128
33	Probing Polarity and Heterogeneity of Lipid Droplets in Live Cells Using a Push–Pull Fluorophore. Analytical Chemistry, 2019, 91, 1928-1935.	3.2	100
34	BODIPY with Tuned Amphiphilicity as a Fluorogenic Plasma Membrane Probe. Bioconjugate Chemistry, 2019, 30, 192-199.	1.8	48
35	Toward the Formulation of Stable Micro and Nano Double Emulsions through a Silica Coating on Internal Water Droplets. Langmuir, 2019, 35, 2313-2325.	1.6	10
36	Spontaneous nano-emulsification with tailor-made amphiphilic polymers and related monomers. European Journal of Pharmaceutical Research, 2019, 1, 27-36.	1.0	5

#	Article	IF	CITATIONS
37	Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. Journal of the American Chemical Society, 2018, 140, 5401-5411.	6.6	294
38	A new formulation of poly(MAOTIB) nanoparticles as an efficient contrast agent for in vivo X-ray imaging. Acta Biomaterialia, 2018, 66, 200-212.	4.1	16
39	Recent Advances in Fluorescent Probes for Lipid Droplets. Materials, 2018, 11, 1768.	1.3	190
40	Ca-NIR: a ratiometric near-infrared calcium probe based on a dihydroxanthene-hemicyanine fluorophore. Chemical Communications, 2017, 53, 6117-6120.	2.2	23
41	Functionalizing Nanoemulsions with Carboxylates: Impact on the Biodistribution and Pharmacokinetics in Mice. Macromolecular Bioscience, 2017, 17, 1600471.	2.1	26
42	PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience. ACS Sensors, 2017, 2, 1706-1712.	4.0	6
43	Turn-on Fluorene Push–Pull Probes with High Brightness and Photostability for Visualizing Lipid Order in Biomembranes. ACS Chemical Biology, 2017, 12, 3022-3030.	1.6	38
44	Quantitative assessment of energy transfer in upconverting nanoparticles grafted with organic dyes. Nanoscale, 2017, 9, 11994-12004.	2.8	32
45	A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes. Chemistry - A European Journal, 2017, 23, 11598-11610.	1.7	32
46	Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology, 2016, 27, 486-500.	1.3	17
47	Dye-doped silica nanoparticle probes for fluorescence lifetime imaging of reductive environments in living cells. RSC Advances, 2016, 6, 104164-104172.	1.7	12
48	FRET-Based Nanobiosensors for Imaging Intracellular Ca2+ and H+ Microdomains. Sensors, 2015, 15, 24662-24680.	2.1	13
49	Calcium dynamics in astrocyte processes during neurovascular coupling. Nature Neuroscience, 2015, 18, 210-218.	7.1	235
50	H-Rubies, a new family of red emitting fluorescent pH sensors for living cells. Chemical Science, 2015, 6, 5928-5937.	3.7	45
51	Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale, 2015, 7, 18198-18210.	2.8	74
52	Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum. Chemical Communications, 2015, 51, 17136-17139.	2.2	72
53	Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium - What Are the Experimental Pitfalls?. Small, 2015, 11, 896-904.	5.2	27
54	Functionalizable red emitting calcium sensor bearing a 1,4-triazole chelating moiety. RSC Advances, 2015, 5, 6993-7000.	1.7	6

#	Article	IF	CITATIONS
55	Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging. Journal of the American Chemical Society, 2015, 137, 405-412.	6.6	87
56	CaRuby-Nano: a novel high affinity calcium probe for dual color imaging. ELife, 2015, 4, .	2.8	27
57	New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2284-2306.	1.9	73
58	Cell-Penetrating Nanobiosensors for Pointillistic Intracellular Ca ²⁺ -Transient Detection. Nano Letters, 2014, 14, 2994-3001.	4.5	36
59	Continuous Photochemical Cleavage of Linkers for Solid-Phase Synthesis. Organic Letters, 2014, 16, 1794-1797.	2.4	26
60	Unexpected remote effect in red fluorescent sensors based on extended APTRA. Tetrahedron, 2013, 69, 10482-10487.	1.0	3
61	Automated Solidâ€Phase Synthesis of Chondroitin Sulfate Glycosaminoglycans. Angewandte Chemie - International Edition, 2013, 52, 5858-5861.	7.2	150
62	Glycosylation efficiencies on different solid supports using a hydrogenolysis-labile linker. Beilstein Journal of Organic Chemistry, 2013, 9, 97-105.	1.3	17
63	Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System. PLoS Pathogens, 2012, 8, e1002706.	2.1	65
64	Calcium Rubies: A Family of Red-Emitting Functionalizable Indicators Suitable for Two-Photon Ca ²⁺ Imaging. Journal of the American Chemical Society, 2012, 134, 14923-14931.	6.6	70
65	Acylsulfonamide safety-catch linker: promise and limitations for solid–phase oligosaccharide synthesis. Beilstein Journal of Organic Chemistry, 2012, 8, 2067-2071.	1.3	10
66	Amphiphilic Behavior and Membrane Solubility of a Dicholesteryl-Cyclodextrin. Langmuir, 2011, 27, 7580-7586.	1.6	7
67	Hexameric Supramolecular Scaffold Orients Carbohydrates To Sense Bacteria. Journal of the American Chemical Society, 2011, 133, 13957-13966.	6.6	80
68	Synthetic biotinylated tetra β(1→5) galactofuranoside for in vitro aspergillosis diagnosis. Bioorganic and Medicinal Chemistry, 2011, 19, 547-555.	1.4	25
69	Synthesis of cross-reactive carbohydrate determinants fragments as tools for in vitro allergy diagnosis. Bioorganic and Medicinal Chemistry, 2011, 19, 1306-1320.	1.4	15
70	Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting. Organic and Biomolecular Chemistry, 2010, 8, 4987.	1.5	73
71	New thioglycoside derivatives for use in odourless synthesis of MUXF3 N-glycan fragments related to food allergens. Tetrahedron, 2008, 64, 1523-1535.	1.0	48
72	Biotin Sulfone as a New Tool for Synthetic Oligosaccharide Immobilization: Application to Multiple Analysis Profiling and Surface Plasmonic Analysis of Anti-Candida albicans Antibody Reactivity against α and β (1→2) Oligomannosides. Journal of Medicinal Chemistry, 2008, 51, 6201-6210.	2.9	25

#	Article	IF	CITATIONS
73	Detection of Antisynthetic Mannoside Antibodies (AΣMA) Reveals Heterogeneity in the ASCA Response of Crohn's Disease Patients and Contributes to Differential Diagnosis, Stratification, and Prediction. American Journal of Gastroenterology, 2008, 103, 949-957.	0.2	25
74	(η ⁶ -Arene)tricarbonylchromium and Ferrocene Complexes Linked to Binaphthyl Derivatives. Organometallics, 2007, 26, 6139-6149.	1.1	9
75	Bis antennae amphiphilic cyclodextrins: the first examples. Tetrahedron Letters, 2007, 48, 8566-8569.	0.7	6
76	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. SSRN Electronic Journal, 0, , .	0.4	0